期刊文献+

三轴磁强计实时自校正算法 被引量:4

Real-Time Self Calibration Algorithm for Three-Axis Magnetometer
下载PDF
导出
摘要 提出一种三轴磁强计的实时自校正算法.通过分析测量误差因素,建立了三轴磁强计输出的参数模型.在此基础上,根据定点地磁场矢量模不变原则建立校正相关参数的非线性状态空间模型,导出了基于扩展卡尔曼滤波器(Extended Kalman Filter,EKF)求解的校正参数估计算法,并相应给出了易于实现的U-D分解滤波形式.相比离线校正,新算法能够对校正参数进行实时估计,且更易于片上实现.通过数值仿真验证了算法推导的正确性.采用三轴磁强计RM3000进行实测校正试验,验证了算法的有效性,并将结果与离线的TWO-STEP算法进行了对比,得出了相应结论. A real-time self calibration approach for tri-axis magnetometers is proposed. The parameterized model of magnetometer readings is established by analyzing the nature of sensor errors,which lays a basis for the derivation of a nonlinear state-space model of calibration parameter using the invariability of local geomagnetic field. The real-time estimation of calibration parameter is derived based on extended Kalman filter( EKF) solution,the U-D decomposition filter is given for ease of implementation. Compared with the batch approaches,the proposed method not only can achieve real-time estimation of calibration parameters,but also is convenient for embedded implementation. Simulation results demonstrate the correctness of the derivation of the proposed approach. The effectiveness is validated by experimental test using RM3000 tri-aixs magnetometer. The results of simulations and experiments are analyzed and concluded in comparisons with TWO-STEP method.
出处 《电子学报》 EI CAS CSCD 北大核心 2017年第7期1750-1757,共8页 Acta Electronica Sinica
关键词 三轴磁强计 实时校正 状态空间模型 扩展卡尔曼滤波器 非线性滤波 tri-axis magnetometer real-time calibration state-space model extended Kalman filter nonlinear filtering
  • 相关文献

参考文献1

二级参考文献23

  • 1黄旭,王常虹.磁强计和微机械陀螺/加速度计组合定姿的扩展卡尔曼滤波器设计[J].黑龙江大学自然科学学报,2005,22(4):454-458. 被引量:13
  • 2李耀明,徐立章,向忠平,邓玲黎.日本水稻种植机械化技术的最新研究进展[J].农业工程学报,2005,21(11):182-185. 被引量:73
  • 3Sugiura R, Noguchi N, Ishii K, Shibata Y, Toriyama K. Field information system using an agricultural helicopter towards precision farming. Biosystems Engineering, 2005, 90(4): 229-240.
  • 4Primicerio J, Gennaro S F D, Fiorillo E, Genesio L, Lugato E, Matese A, Vaccari F P. A flexible unmanned aerial vehiclefor precision agriculture. Precision Agriculture, 2012, 13(4): 517-523.
  • 5Long D, Tobias F, Chen Y Q. A data fusion system for at- titude estimation of low-cost miniature UAVs. Journal of Intelligent and Robotic Systems, 2012, 65(1): 621-635.
  • 6Madgwick S O H, Harrison A J L, Vaidyanathan R H. Es- timation of IMU and MARG orientation using a gradient descent algorithm. In: Proceedings of the 2011 IEEE Inter- national Conference on Rehabilitation Robotics (ICORR). Switzerland: IEEE. 2011. 1-7.
  • 7Mahony R, Hamel T, Pflimin J M. Nonlinear complementary filters on the special orthogonal group. IEEE Transactions on Automatic Control, 2008, 53(5): 1203-1218.
  • 8桑延德,程敏,何福苯,季航.基于多源信息的飞行姿态估计方法.飞行力学,2011,30(11):56-58.
  • 9李荣冰,刘建业,孙永荣.MEMS-IMU构型设计及惯性器件安装误差标定方法[J].中国惯性技术学报,2007,15(5):526-529. 被引量:27
  • 10郭鹏飞,任章,邱海韬,丁新春.一种十二位置不对北的磁罗盘标定方法[J].中国惯性技术学报,2007,15(5):598-601. 被引量:28

共引文献48

同被引文献27

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部