期刊文献+

固体激光器中正交偏振模式间增益竞争的研究 被引量:1

Gain Competition Between Orthogonally Polarized Modes in Solid-State Lasers
原文传递
导出
摘要 由兰姆半经典激光理论可知,固体激光器中两个模式能否同时振荡取决于两个模式之间的耦合程度,其定义为增益竞争引起的互饱和系数与自饱和系数之比。实验中,利用两个四分之一波片搭建了双频Nd…YAG固体激光器,实现了频差从30 MHz到1.3GHz连续可调的双频激光输出,在此基础上,测量了两正交偏振模式在不同频差输出条件下的噪声功率谱密度,计算出表征两个模式间增益竞争程度的耦合系数。理论上,根据兰姆半经典理论推导出耦合系数的表达式,验证了实验中耦合系数随着频差增加而减小的变化趋势,分析了影响耦合系数的因素,为进一步优化双频固体激光器提供理论基础。 According to Lamb′s semiclassical laser theory,whether the two modes in a solid-state laser can oscillate simultaneously depends on the mode-coupling coefficient between them.The coupling coefficient is defined as the ratio of cross-saturation factors and self-saturation factors.A dual-frequency NdYAG solid-state laser is built with two quarter-wave plates,and the frequency difference from30 MHz to 1.3 GHz is obtained.On this basis,the noise power spectrum density of two orthogonally polarized modes is measured under different frequency differences,by which the coupling coefficients of gain competition between two modes are calculated.In theory,based on the Lamb′s semiclassical laser theory,the coupling coefficient expression is deduced,and the trend that the coupling coefficient decreases with the increasing of frequency difference is verified.The factors influencing the coupling coefficient are analyzed.It provides the theoretical foundation for further optimization of dual-frequency solid-state laser.
出处 《光学学报》 EI CAS CSCD 北大核心 2017年第7期162-166,共5页 Acta Optica Sinica
基金 国家自然科学基金(61275053)
关键词 激光器 双频激光器 耦合系数 增益竞争 正交模式 lasers dual-frequency lasers coupling coefficient gain competition orthogonally polarized modes
  • 相关文献

参考文献1

二级参考文献19

  • 1刘刚,张书练,徐亭,朱钧,李岩.腔调谐过程中激光器中两垂直偏振光的回馈特性[J].物理学报,2005,54(10):4701-4709. 被引量:5
  • 2李磊,赵长明,高岚,孙鑫鹏,杨苏辉.变光外差为电外差的双频激光探测[J].光学学报,2007,27(2):249-252. 被引量:21
  • 3Gliese U,Nielsen T,Norskov S,Stubkjaer K 1998 IEEE Trans.Microwave Theory Technol.46 458
  • 4Gliese U,Christiensen E 1991 J.Lightwave Technol.9 779
  • 5Morvan L,Alouini M,Grisard A,Lallier E,Dolfi D,Normandin X,Bouchardy A,Berginc G,Granger G,Chazelas J 2004 SPIE 5613 76
  • 6Lau K Y 1988 Appl.Phys.Lett.52 2214
  • 7Ni D,Fetterman H,Chew W 1990 IEEE Trans.Microwave Theory Technol.38 608
  • 8Hyodo M,Tani M,Matsuura S,Onoder N,Sakai K 1996 Electron.Lett.32 1589
  • 9Yao X,Maleki L 1996 Opt.Lett.21 483
  • 10Brunel M,Bretenaker F,Floch A Le 1997 Opt.Lett.22 384

共引文献8

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部