期刊文献+

基于随机变量交替方向乘子法的荧光分子断层成像 被引量:8

Fluorescence Molecular Tomography Using a Stochastic Variant of Alternating Direction Method of Multipliers
原文传递
导出
摘要 增加测量信息可以有效降低荧光分子断层成像(FMT)重建的病态性,但随着数据增多,重建耗时也会显著增加。为了降低FMT重建的病态性和提升大规模数据集下的重建效率,结合对偶坐标下降法(DCA)和交替方向乘子法(ADMM)提出了一种改进的随机变量的交替方向乘子法重建优化方法。在原始ADMM方法的基础上,增加了一个随机更新规则,在每次迭代中只需要一个或者几个样本,就可加速收敛,使目标函数快速得到最优解,从而达到快速重建的效果。设计了数字鼠仿真实验和真实鼠实验,实验结果表明,所提方法在保证FMT重建图像精度的同时,显著提高了重建效率。 Increasing measurement information can effectively reduce the ill-posedness of the fluorescence molecular tomography(FMT)reconstruction. With the increase of data,the time of FMT reconstruction will increase significantly.In order to reduce the ill-posedness of FMT reconstruction and enhance reconstruction efficiency under big data sets,a reconstruction method of improved stochastic variant of alternating direction method of multipliers(ADMM)is proposed by combining dual coordinate ascent(DCA)method and ADMM method.The proposed method offers a stochastic update rule base on the original ADMM method where each iteration requires only one or few sample observations,thus gives speed up of convergence,so that the objective function can get the optimal solution rapidly and achieve the effect of rapid reconstruction.Simulation experiments of digital mouse and real mouse experiment show that the proposed method can guarantee FWT reconstruction images′s accuracy and improve reconstruction efficiency.
出处 《光学学报》 EI CAS CSCD 北大核心 2017年第7期187-194,共8页 Acta Optica Sinica
基金 国家自然科学基金(61640418 61601363)
关键词 医用光学 荧光分子断层成像 Lasso问题 交替方向乘子法 图像重建 medical optics fluorescence molecular tomography(FMT) Lasso problem alternating direction method of multipliers(ADMM) image reconstruction
  • 相关文献

参考文献3

二级参考文献39

  • 1Ntziachristos V, Tung C H, Bremer C, et al.. Fluorescence molecular tomography resolves protease activity in vivo[J]. Nature Medicine, 2002, 8(7): 757-761.
  • 2Deliolanis N, Lasser T, Hyde D, et al.. Free-space fluorescence molecular tomography utilizing 360~ geometry projections[J]. Optics Letters, 2007, 32(4): 382-384.
  • 3Bai J, Xu Z. Fluorescence Molecular Tomography[M]. Berlin: Springer Berlin Heidelberg, 2013: 185-216.
  • 4Ale A, Ermolayev V, Herzog E, et al.. FMT-XCT: In vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography[J]. Nature Methods, 2012, 9(6): 615-620.
  • 5Ale A, Schulz R B, Sarantopoulos A, et al.. Imaging performance of a hybrid X-ray computed tomography - fluorescence molecular tomography system using priors[J]. Medical Physics, 2010, 37(5): 1976-1986.
  • 6Bangerth W, Joshi A. Adaptive finite element methods for the solution of inverse problems in optical tomography[J]. Inverse Problems, 2008, 24(3): 034011.
  • 7Donoho D L. For most large underdetermined systems of linear equations the minimal ~-norm solution is also the sparsest solution[J]. Communications on Pure and Applied Mathematics, 2006, 59(6): 797-829.
  • 8Zhang Q, Qu x, Chen D, et al.. Experimental three-dimensional biolumineseenee tomography reconstruction using the Ip regularization [J]. Advanced Seienee Letters, 2012, 16(1): 125-129.
  • 9Baritaux J C, Hassler K, Unser M. An efficient numerical method for general regularization in fluorescence molecular tomography [J]. IEEE Transactions on Medical Imaging, 2010, 29(4): 1075-1087.
  • 10He X, Liang J, Wang X, et al.. Sparse reconstruction for quantitative biolumineseenee tomography based on the incomplete variables truneated conjugate gradient method[J]. Optics Express, 2010, 18(24): 24825-24841.

共引文献18

同被引文献34

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部