期刊文献+

面向高光谱图像分类的空谱半监督局部判别分析 被引量:11

Spatial-Spectral Semi-Supervised Local Discriminant Analysis for Hyperspectral Image Classification
原文传递
导出
摘要 针对传统的基于特征提取的高光谱图像分类算法大多只考虑光谱信息而忽略空间信息的问题,提出了一种基于空谱半监督局部判别分析(S3 ELD)和空谱最近邻(SSNN)分类器的高光谱图像分类算法。该算法结合高光谱图像的空间一致性,在利用标记样本的判别信息保持数据集可分性的基础上,定义空间近邻像元散度矩阵来保存像元的空间近邻结构,提出基于空谱距离的相似性度量并将其应用于局部流形结构的发现和SSNN的构建。S3 ELD算法不仅能揭示数据集的局部几何关系,而且增强了光谱域同类像元和空间域近邻像元在低维嵌入空间的聚集性。结合SSNN进行分类,进一步提升了分类精度。利用PaviaU和Salinas数据集进行的实验结果表明,S3 ELD算法的总体分类精度分别达到了92.51%和96.29%;与现有几种算法相比,该算法能更有效地提取出判别特征信息,并达到更高的分类精度。 In traditional hyperspectral image classification algorithm based on feature extraction,spectral information is usually considered while spatial information is ignored.To address this problem,a hyperspectral image classification algorithm based on semi-supervised spatial-spectral local discriminant analysis(S3ELD)and spatial-spectral nearest neighbor(SSNN)classifier is proposed in this paper.Combining the spatial consistency of hyperspectral images and on the basis that the discriminant information of the labeled samples is used to maintain the separability of the data set,we define the spatial local pixel scatter matrix to preserve the spatial-domain neighborhood structures of pixel.A similarity measure method based on the spatial-spectral distance is then proposed to discover the local manifold structure and to construct SSNN.S3 ELD algorithm not only reveals the local geometric relations of the data set but also enforces the compactness of the spectral-domain same class pixels and the spatial-domain local neighbor pixels in the low-dimension embedding space.Combining SSNN to classify,the classification accuracy is further enhanced.The experiments on the PaviaU and Salinas data sets show that the overall classification accuracy of S3 ELD algorithm reaches 92.51% and96.29%,respectively.Compared with several existing algorithms,the proposed algorithm can efficiently extract the information of discriminant characteristics and obtain higher classification accuracy.
出处 《光学学报》 EI CAS CSCD 北大核心 2017年第7期306-315,共10页 Acta Optica Sinica
基金 国家自然科学基金青年科学基金(61401471) 中国博士后科学基金(2014 M562636)
关键词 遥感 高光谱图像分类 半监督局部判别分析 空谱距离 空间近邻 remote sensing hyperspectral image classification semi-supervised local discriminant analysis spatial-spectral distance spatial neighbor
  • 相关文献

参考文献4

二级参考文献33

  • 1Abdi H and Williams LJ. Principal component analysis[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(4): 433-459.
  • 2Moulin C, Largeron C, Ducottet C, et al. Fisher linear discriminant analysis for text-image combination in multimedia information retrieval[J]. Pattern Recognition, 2014, 47(1): 260-269.
  • 3Wan M, Lai Z, andJin Z. Feature extraction using two-dimensional local graph embedding based on maximum margin criterion[J]. Applied Mathematics and Computation, 2011, 217(23): 9659-9668.
  • 4Zhao X and Zhang S. Facial expression recognition using local binary patterns and discriminant kernel locally linear embedding[J]. EURASIPJournal on Advances in Signal Processing, 2012, 2012(1): 1-9.
  • 5Rosman G, Bronstein M M, Bronstein A M, et al. Nonlinear dimensionality reduction by topologically constrained isometric embedding[J]. InternationalJournal of Computer Vision, 2010, 89(1): 56-68.
  • 6Luo W. Face recognition based on Laplacian Eigenmaps[C]. Proceedings of the 2011 IEEE International Conference on Computer Science and Service System (CSSS), Nanjing, China, 2011: 416-419.
  • 7He X and Niyogi P. Locality preserving projections[C]. Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 2004: 234-241.
  • 8He X, Cai D, Yan S, et al. Neighborhood preserving embedding[C]/ /Proceedings of the 2005 IEEE International Conference on Computer Vision (ICCV), Beijing, China, 2005: 1208-1213.
  • 9Song Y Q, Nie F P, Zhang C S, et al. A unified framework for semi-supervised dimensionality reduction[J]. Pattern Recognition, 2008, 41(9): 2789-2799.
  • 10Song Y Q, Nie F P, and Zhang C S. Semi-supervised sub-manifold discriminant analysis[J]. Pattern Recognition Letters, 2008, 29(13): 1806-1813.

共引文献196

同被引文献68

引证文献11

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部