摘要
A corona based weakly ionized plasma source was developed to deposit plasma polymerized acetylene coating at atmospheric pressure. The plasma source included a distinctive point-topoint geometry consisting of an array of high voltage needles and an array of protrusions placed over a grounded screen. The geometry facilitated various corona discharge modes that included return corona to contribute plasma polymerized acetylene deposition downstream from the corona section. Scanning probe techniques were used to investigate deposition on both the leading surface and the trailing surface of substrates. Deposition was initiated as distinct nodules that merged to form a thin plasma polymerized coating.
A corona based weakly ionized plasma source was developed to deposit plasma polymerized acetylene coating at atmospheric pressure. The plasma source included a distinctive point-topoint geometry consisting of an array of high voltage needles and an array of protrusions placed over a grounded screen. The geometry facilitated various corona discharge modes that included return corona to contribute plasma polymerized acetylene deposition downstream from the corona section. Scanning probe techniques were used to investigate deposition on both the leading surface and the trailing surface of substrates. Deposition was initiated as distinct nodules that merged to form a thin plasma polymerized coating.