期刊文献+

田口方法优化菊糖源低聚果糖单体标准品制备工艺的研究

Optimization of inulin-derived oligofructose standard monomer using Taguchi method
下载PDF
导出
摘要 目前市场上低聚果糖标准品仅有蔗果型(GFn)标准品,缺乏果果型(Fn)标准品,本实验采用聚丙烯酰胺凝胶Bio-Gel-P4和Bio-Gel-P2从来自菊糖的低聚果糖混合物中分离制备果果型(Fn)低聚果糖单体,并通过田口方法对分离条件进行优化。结果表明,上样浓度对菊糖分离的影响最大,采用Bio-Gel-P4凝胶柱(2.0×100 cm),最佳操作条件为流速0.05 m L/min,上样体积2 m L,上样浓度100 g/L,5%乙醇洗脱;采用Bio-Gel-P2凝胶柱(2.0×100 cm),最佳操作条件为流速0.05 m L/min,上样体积1 m L,上样浓度100 g/L,5%乙醇洗脱。在最佳条件下,将Bio-Gel-P4柱一级分离产品进行浓缩,之后于Bio-Gel-P2柱对其进行二级分离,得到果果三糖(F3)纯度≥98%,果果四糖(F4)纯度≥90%。 On the current Fos standard products market, it only has GFn oligomer standard products but lack of Fn oligomer standard products. The separation conditions for Fn oligofructose monomer from fructooligosaccharides mixtures derived from inulooligosaccharides were optimized by the Taguchi method in this study. The results showed that the sample concentration was the most significant factor for inulin separation. The optimum separation could be obtained at flow rate 0.05 mL/min, sample concentration 100 g/L, sample volume 2 mL and elution solution of 5% ethanol with the column of Bio-Gel-P4 (2.0 × 100 cm). The sample then submitted to Bio-Gel-P2 (2.0 × 100 cm) column chromatography, the optimum separation conditions were: flow rate 0.05 mL/min, sample concentration 100 g/L, sample volume 1 mL and elution solution of 5% ethanol. Under the above optimum conditions, the product from Bio-Gel-P4 column was concentrated and separated by Bio-Gel-P2 column chromatography. The purity of F3 was ≥98%, and F4 was ≥90%.
出处 《中国食品添加剂》 北大核心 2017年第7期49-55,共7页 China Food Additives
基金 国家自然科学基金(21306221) 山东省科技重大专项(重大关键技术)(2015ZDJS03002) 烟台大学研究生科技创新基金资助(YDYB1716)
关键词 菊糖 低聚果糖 分离 田口方法 优化 inulin oligosaccharide separation Taguchi method optimization
  • 相关文献

参考文献10

二级参考文献79

共引文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部