期刊文献+

一类射影平坦和对偶平坦的Finsler度量(英文)

A class of projectively flat and dually flat Finsler metrics
下载PDF
导出
摘要 Finsler几何是没有二次型限制的黎曼几何,Finsler几何中两个非常重要的问题是射影平坦和对偶平坦的Finsler度量.主要研究了一类含有3个参数的Finsler度量,得到了其为射影平坦和对偶平坦的充要条件. Finsler geometry is just Riemannian geometry without quadratic restriction,and the projectively flat and dually flat Finsler metrics are very important in Finsler geometry.Here a class of 3-parameter of Finsler metrics were studied,and the necessary and sufficient conditions for the Finsler metrics to be projectively flat and dually flat were obtained.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2017年第6期459-464,473,共7页 JUSTC
基金 Supported by the National Natural Science Foundation of China(11371032)
关键词 FINSLER度量 球对称 射影平坦 对偶平坦 Finsler metrics spherically symmetric projectively flat dually flat
  • 相关文献

参考文献2

二级参考文献14

  • 1MO Xiaohuan, SHEN Zhongmin & YANG Chunhong LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China,Department of Mathematical Sciences, Indiana University-Purdue University, Indianapolis, IN 46202-3216, USA,Department of Mathematics, Inner Mongolia University, Hohhot 010021, China.Some constructions of projectively flat Finsler metrics[J].Science China Mathematics,2006,49(5):703-714. 被引量:15
  • 2Amari, S.-I. and Nagaoka, H., Methods of Information Geometry, Oxford University Press and Amer.Math. Soc., 2000.
  • 3Bao, D., Chern, S. S. and Shen, Z., An Introduction to Riemann-Finsler Geometry, Springer, 2000.
  • 4Amari, S.-I., Differential Geometrical Methods in Statistics, Springer Lecture Notes in Statistics, 20,Springer, 2002.
  • 5Dodson, C. T. J. and Matsuzoe, H., An affine embedding of the gamma manifold, Appl. Sci. (electronic),5(1), 2003, 7-12.
  • 6Dzhafarov, E. D. and Colonius, H., Fechnerian metrics in unidimensional and multidimensional stimulus,Psychological Bulletin and Review, 6, 1999, 239-268.
  • 7Dzhafarov, E. D. and Colonius, H., Fechnerian scaling, probability-distance hypothesis, and Thurstonian link, Technical Report #45, Purdue Mathematical Psychology Program.
  • 8Dzhafarov, E. D. and Colonius, H., Fechnerian Metrics, Looking Back: The End of the 20th Century Psychophysics, P. R. Kileen & W. R. Uttal (eds.), Arizona University Press, Tempe, AZ, 111-116.
  • 9Hwang, T.-Y. and Hu, C.-Y., On a characterization of the gamma distribution: The independence of the sample mean and the sample coefficient of variation, Annals Inst. Statist. Math., 51, 1999, 749-753.
  • 10Lauritzen, S. L., Statistical manifolds, Differential Geometry in Statistical Inferences, IMS Lecture Notes Monograph Series, 10, Hayward California, 1987, 96-163.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部