期刊文献+

轴肩过渡曲线设计及应力集中分析 被引量:4

Design and stress concentration analysis of shoulder transition curves
下载PDF
导出
摘要 分析单曲率圆弧、双曲率圆弧、三曲率圆弧、椭圆和流线形等多种轴肩过渡曲线的设计方法,利用有限元软件Abaqus对这些曲线进行建模分析。对于单曲率圆弧,应力集中系数和应力集中角度随着过渡半径的增大而减小,但是应力集中系数减小的效果并不十分明显。流线形过渡曲线基本消除了应力集中,其应力集中系数仅为1.004。双曲率圆弧、三曲率圆弧和椭圆过渡曲线也都将应力集中系数降低到1.05以下,适于实际工程应用。 The design methods of single-radius, two-radii, three-radii, elliptical and streamline shoulder transition curves are analyzed and they are modeled by Abaqus. For single-radius shoulder transition curve, both the stress concentra- tion factor and the stress concentration angle decrease as the transition radius increases, but the decrease of the stress concen- tration factor is not significant. The stress concentration factor of the streamline shoulder transition curve is reduced to 1.004. Two-radii, three-radii and elliptical shoulder transition curves all make the stress concentration factor below 1.05 and they are suitable for engineering application.
作者 屠星星 徐勇杰 TU Xing-xing XU Yong-jie(Shanghai Merchant Ship Design and Research Institute, Shanghai 201203, China)
出处 《舰船科学技术》 北大核心 2017年第5期38-41,共4页 Ship Science and Technology
关键词 轴肩 过渡曲线 过渡半径 应力集中系数 shoulder transition curve transition radius stress concentration factor
  • 相关文献

参考文献3

二级参考文献18

  • 1马平.拉伸载荷下环形切口试件的应力集中系数[J].兰州理工大学学报,2004,30(4):49-52. 被引量:13
  • 2马平.弯曲载荷下环形切口试件的应力集中系数[J].兰州理工大学学报,2005,31(3):43-46. 被引量:8
  • 3刘福义,刘兆新,刘晓东,郭磊.中厚板轧机十字轴结构优化[J].冶金设备,2005(5):68-70. 被引量:2
  • 4NISITANI H,NODA N A. Stress concentration of a cylindrical bar with a V-shaped circumferential groove under torsion, tension or bending [J]. Engineering Fracture Mechanics, 1984,20 (5,6) :743-766.
  • 5Pedersen N L. Stress Concentrations in Keyways and Optimization of Keyway Design[J].Journal of Strain Analysis for Engineering Design, 2010, 45 (8) :1-4.
  • 6Pedersen N L. Optimization of Bolt Thread Stress Concentrations[J]. Archive of Applied Mechanics, 2013,83(1) : 1-14.
  • 7Pedersen N I., Pedersen P. Design of Notches and Grooves by Means of Elliptic Shapes[J]. Journal of Strain Analysis for Engineering Design, 2008, 43 (1) :1-14.
  • 8Marsden B J,Blakemore R H. Stress Concentrations around Elliptical Fillets in Stepped Flat Bars[J]. Journal of Strain Analysis for Engineering Design, 1981,16(4) :227-34.
  • 9Taylor D,Kelly A,Toso M,et al. The Variable-Ra- dius Notch: Two New Methods for Reducing Stress Concentration[J]. Engineering Failure Anal- ysis,2011,18(3) :1009-1017.
  • 10西村孝正.应力集中[M].李安定,译.北京:机械工业出版社,1986.

共引文献11

同被引文献19

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部