期刊文献+

基于AMPSO和GRNN的绝缘子污秽度预测模型 被引量:5

Prediction Model for Insulator Contamination Degree Based on AMPSO and GRNN
下载PDF
导出
摘要 绝缘子表面沉积的污秽物是造成污闪事故的主要原因,而污闪事故对电力系统的安全稳定运行构成较大威胁,因此,需要定期对输电线路绝缘子进行检修和清扫作业以避免污闪事故发生。针对此,利用广义回归神经网络(general regression neural network,GRNN)来预测绝缘子表面等值附盐密度(equivalent salt deposit density,ESDD),但GRNN中平滑因子的取值对网络的预测性能有较大影响,因而利用自适应变异粒子群(adaptive mutation particle swarm optimization,AMPSO)算法来选取GRNN的最佳平滑因子。进一步提出经AMPSO优化的GRNN对绝缘子污秽度的预测模型,预测结果表明,所提优化预测模型可以对绝缘子的ESDD数值进行有效预测,且预测误差相对较小。 Contamination on the surface of insulator is the main cause for pollution flashover, and accidents of pollute flashover may threaten safe and stable operation of the power system. Thus, it requires regular maintenance and cleaning work to avoid pollution flashover accidents. Therefore, this paper uses generation regression neural network (GRNN) to predict equivalent salt deposit density (ESDD) on the surface of insulator. But the value of smooth factor in GRNN has great impact on prediction performance of the network, it tries to use adaptive mutation particle swarm optimization (AMPSO) to select optimal smooth factor of GRNN. Furthermore, it proposes a GRNN prediction model for contamination degree of the insulator based on AMPSO and prediction results indicate the proposed model can perform effective prediction on ESDD of the insulator and the prediction error is comparatively less.
出处 《广东电力》 2017年第7期76-82,共7页 Guangdong Electric Power
基金 国家电网公司重大基础前瞻科技项目(SG20141187)
关键词 绝缘子 等值附盐密度 预测模型 自适应变异粒子群 广义回归神经网络 insulator equivalent salt deposit density prediction model adaptive mutation particle swarm optimization gen-eral regression neural network
  • 相关文献

参考文献10

二级参考文献154

共引文献377

同被引文献80

引证文献5

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部