期刊文献+

面向多敏感属性的匿名隐私保护方法 被引量:2

Method of anonymous privacy preserving for multi-sensitive attributes
下载PDF
导出
摘要 在数据发布过程中,如果对发布的敏感属性信息不进行任何保护处理而直接发布,容易遭受攻击导致隐私信息泄露。针对传统的单敏感属性隐私保护方法在多敏感属性中不能得到很好的隐私保护效果,提出了一种基于多敏感属性相关性划分的(m,l)-匿名隐私保护模型。利用信息增益法对多敏感属性的相关性进行计算并划分,降低敏感属性维度;根据(m,l)-diversity原则对敏感属性分组,保证发布的数据能防止偏斜性攻击,并且在一定程度上降低背景知识攻击的风险;采用聚类技术实现该模型,减小该模型产生的附加信息损失和隐匿率,确保发布的数据具有较高的可用性。实验结果表明,基于多敏感属性相关性划分的(p,l)-匿名隐私保护模型具有较小的附加信息损失和隐匿率,保证了发布数据的可用性。 In the data publishing process, if the sensitive attribute information is released without any protection process-ing ,it will be vulnerable to be attacked, which leads to the leakage of privacy information. In this paper, since the tradi-tional single-sensitive attribute privacy protection methods do not perform well in the multi-sensitive attributes scenarios, an anonymous privacy protection model based on multi-sensitive attribute relevance partitioning is proposed. First, the infor-mation gaining method is used to calculate the correlation of multi-sensitive attributes, and the dimension of sensitive attrib-utes is reduced. Then, sensitive attributes are grouped according to the (m,l) -diversity principle to ensure that the pub-lished data can prevent skew attacks, and to a certain extent ,the risk of background knowledge attack is reduced. Finally, this model is implemented by clustering technique to reduce the additional information loss and concealment rate of the mod-el and ensure the high availability of the published data. The experimental results show that the anonymity privacy protec-tion model based on multi-sensitive attribute correlation has smaller additional information loss and concealment rate, which ensures the availability of published data.
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2017年第4期542-549,共8页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 重庆市教育科学"十二五"规划重点课题 重庆市高校优秀成果转化资助(KJZH17116) 重庆市社会民生科技创新专项(cstc2016shmszx40001)~~
关键词 多敏感属性 匿名 聚类 信息增益 multi-sensitive attributes anonymity clustering information
  • 相关文献

参考文献4

二级参考文献52

  • 1杨晓春,刘向宇,王斌,于戈.支持多约束的K-匿名化方法[J].软件学报,2006,17(5):1222-1231. 被引量:60
  • 2Lwuchukwu T, Naughton J. K-anonymization as spatial indexing: Toward sealable and incremental anonymization// Proceedings of the 33rd International Conference on Very Large Data Bases. Vienna, Austria, 2007:746-757
  • 3Wong R, Fu A, Wang D, Pei J. Minimality attack in privacy preserving data publishing//Proceedings of the 33rd International Conference on Very Large Data Bases. Vienna, Aus tria, 2007: 543-554
  • 4Sweeney L. K anonymity: A model for protecting privacy. International Journal on Uncertainty, Fuzziness, and Knowl edge-Based Systems, 2002, 10(5): 557-570
  • 5Samarati P, Sweeney L. Generalizing data to provide anonymity when disclosing information//Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. Seattle, Washington, 1998: 188
  • 6Xiao X, Tao Y. Anatomy: Simple and effective privacy preservation//Proceedings of the 32nd International Conference on Very Large Data Bases. Seoul, Korea, 2006:139-150
  • 7Machanavajjhala A, Gehrke J, and Kefer D. l-diversity: Privacy beyond κ -anonymity//Proceedings of the 22nd International Conference on Data Engineering. Atlanta, Georgia,2006:24
  • 8Bayardo R, Agrawal R. Data privacy through optimal κ-anonymization//Proccedings of the 21st International Conference on Data Engineering. Tokyo, Japan, 2005:217-228
  • 9LeFevre K, DeWitt D, Ramakrishnan R. Incognito: Efficient full-domain κ-anonymity//Proceedings of the ACM SIGMOD International Conference on Management of Data. Baltimore, Maryland, 2005:49-60
  • 10Meyerson A, Williams R. On the complexity of optimal κ-anonymity//Proceedings of the 23rd ACM SIGACT SIG- MOD-SIGART Symposium on Principles of Database Systems. Paris, France 2004: 223-228

共引文献62

同被引文献12

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部