期刊文献+

一种基于摄影测量的自动分拣系统标定方法 被引量:2

Aphotogrammetry-based Approach to Automatic Sorting System Calibration
下载PDF
导出
摘要 针对6轴工业机器人自动分拣系统,提出了一种新的标定方法。该方法由工作相机对置于传送带上的平面靶标拍摄一幅图像,据此计算工作相机与平面靶标之间的单应性矩阵,运用摄影测量系统对传送带上的平面靶标及散布于机器人表面的标记点拍摄机器人绕A4轴做一次旋转运动前后的2组图像,再拍摄机器人绕其A1轴做一次旋转运动前后的2组图像,在对每组图像中的目标点分别进行三维重建的基础上,得到机器人坐标系以及平面靶标与机器人坐标系的位置关系,进而结合计算出的单应性矩阵得到工作相机图像平面至机器人坐标系的映射,实现自动分拣系统的标定。经实验验证,具有较高的标定精度。 A new calibration approach to automatic sorting system with six DOF robot is proposed.In the calibration process,one image of the planar target on the conveying belt is taken by the working camera,then the image taken is used to calculate the homography between the working camera and the planar target.The robot rotates around its A4 axis once,and a group of images of the visual markers scattered on the robot before and after the rotation are taken by the photogrammetry camera respectively.Then the robot rotates around its A1 axis once,and a group of images of the planar target and the visual markers scattered on the robot before and after the rotation are taken by the photogrammetry camera respectively.Based on the 3D reconstruction results of the two groups of images,the coordinate system of the robot is established and the geometric relationship between the planar target and the robot is achieved.Combined with the homography calculated,the transformation matrix between the working camera image plane and the robot coordinate system is implemented to completes the whole calibration.Experiments show that the proposed method is of high calibration accuracy.
出处 《机械制造与自动化》 2017年第4期219-224,共6页 Machine Building & Automation
关键词 自动分拣系统 摄影测量方法 标定 单应性 automatic sorting system photogrammetry calibration homography
  • 相关文献

参考文献1

二级参考文献15

  • 1邓宝松,高宇,杨冰,吴玲达.一种三维准欧氏重建方法[J].小型微型计算机系统,2006,27(4):741-744. 被引量:2
  • 2周玲,张丽艳,郑建冬,张维中.近景摄影测量中标记点的自动检测[J].应用科学学报,2007,25(3):288-294. 被引量:32
  • 3Tomasi C, Kanade T. Shape and motion from image streams under orthography: a factorization method[J]. The International Journal of Computer Vision, 1992, 9 (2):137- 154.
  • 4Poelman C J, Kanade T. A paraperspective factorization method for shape and motion recovery[C]//Proceedings of the 3rd European Conference on Computer Vision, Volume B of Lecture Notes in Computer Science. Berlin: Springer-Verlag, 1994:97 -108.
  • 5Sturm P, Triggs B. A factorization based algorithm for multi-image projective structure and motion[C]//Europe an Conference on Computer Vision. Cambridge: Springer Verlag, 1996:709-720.
  • 6Rother C, Carlsson S, Tell D. Projective factorization of planes and cameras in multiple views[C]//Proceedings of the 16th International Conference on Pattern Recognition. [s. l. ]:IEEE, 2002:737 -740.
  • 7Zhang Z, Shan Y. Incremental motion estimation through local bundle adjustment[R]. Microsoft Research Technical Report MSR TR-01-54, 2001.
  • 8Hartley R I. Euclidean reconstruction from uncalibrated views[C] // Applications of Invariance in Computer Vision. London: Springer-Verlag, 1993:237-256.
  • 9Forbes K, Voigt A, Bodika N. An inexpensive, automatic and accurate camera calibration method[C]//Proceedings of the Thirteenth Annual Symposium of the Pattern Recognition Association of South Africa (PRASA 2002). 2002.
  • 10Torr P H S, Zisserman A. MLESAC: A new robust est mator with application to estimating image geometry[J].Computer Vision and Image Understanding, 2000,78 (1) 138-156.

共引文献8

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部