期刊文献+

基于SAW传感器阵列的混合气体定性分析 被引量:2

Quantitative Analysis of Mixed Gas Based on SAW Sensor Array
下载PDF
导出
摘要 针对野外文物古迹环境的多变性、传感器气敏性失效以及腐蚀性气体定性不精确等实际情况,结合物联网技术和模式识别技术,在综合考虑准确度和项目实际要求的情况下,设计了一种基于声表面波(SAW)传感器阵列的模式识别算法,并通过MATLAB对其进行仿真和验证。结果证明,将传感器阵列输出的数据输入到有6个隐层的神经单元的单隐层BP神经网络中进行训练,预测效果最好,对腐蚀性气体的识别率达到了95%左右,提高了野外微气象环境下腐蚀性气体的监测水平。 Aiming at the physical truth of the variety condition of the cultural relics,gas sensor failure and qualitative imprecision of the corrosive gases,based on the Internet of Things technology and pattern recognition technology,in the case of considering the accuracy and the actual requirements of the project,apattern recognition algorithm based on SAW sensor array is designed in this paper,Meanwhile,the simulation and verification are carried out based on MATLAB.It is shown that the best prediction results are obtained when the sensor array output is used as the actual input of the neural network,then the training and testing of this single layer BP neural network with six neurons in hidden layer are performed,The recognition rate of the corrosive gas is up to about 95%,which improves the monitoring level of corrosive gas in the field micro meteorological environment.
出处 《压电与声光》 CSCD 北大核心 2017年第4期549-552,共4页 Piezoelectrics & Acoustooptics
基金 重庆市教育委员会基金资助项目(KJ1500433) 重庆邮电大学自然科学基金资助项目(A2012-97) 2014年重邮文峰创新创业基金资助项目
关键词 声表面波(SAW)传感器 模式识别 定性分析 MATLAB SAW sensor pattern recognition quantitative analysis MATLAB
  • 相关文献

参考文献5

二级参考文献20

  • 1潘茂庆,顾占波,王建军.基于神经网络的机载导弹电路故障诊断[J].弹箭与制导学报,2003,23(S2):184-186. 被引量:1
  • 2李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 3焦伯恒,戴国瑞,管玉国.气敏传感器阵列模式识别简述[J].云南大学学报(自然科学版),1997,19(2):217-219. 被引量:3
  • 4张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1994..
  • 5GRADNER J W,BRTLETT P N.A briefhistory of electronic nose[J].Sensors and Actuators,1994,18-19:211-220.
  • 6许东,吴铮.基于MATLAB6.X的系统分析与设计[D].西安:西安电子科技大学出版社,2002.
  • 7SANTIAGO M,ARTURO O.Gas identification with tin oxide sensor array and self-organizing maps:adaptive correction of sensor drifts[J].IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,1998,47(1):316-320.
  • 8张立明,人工神经网络的模型及其应用,1994年
  • 9FU Y Q,LUO J K,DU X Y,et al.Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications:a review[J].Sensors and Actuators B,2010,143(2):606-619.
  • 10Catelani M, Fort A. Fault diagnosis of electronic analog circuits u- sing a radial basis function network classifier [J]. Measurement, 2000, 28: 147-158.

共引文献1116

同被引文献23

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部