期刊文献+

电容式微机械超声换能器封装设计 被引量:2

Design of Encapsulation on Capacitive Micromachined Ultrasonic Transducer
下载PDF
导出
摘要 针对电容式微机械超声换能器(CMUT)封装材料阻抗匹配失衡,应力大及声波能量损失大等问题,设计了一种在水下10m透声性能好、弯曲形变小的聚氯乙烯封装结构。依据透声理论和材料属性,计算封装结构参数。利用COMSOL Multiphysics 5.0建立封装结构三维有限元模型,通过模态分析和静态分析分别得到封装结构的固有属性和水下机械性能。封装结构的一阶共振频率为792.47Hz,不会对CMUT 400kHz的工作频段产生干扰。利用压力平衡装置保护水下系统安全性,水下10m最大形变为1.12mm,最大应力为14.4 MPa,未超过聚氯乙烯的弯曲强度。实际测试声压与理论值最大误差为4.8%,物距测量误差为1mm,设计的CMUT封装结构满足设计要求。 Aiming at the problem of the imbalance of impedance matching,large stress and high acoustic energy loss in the current capacitive micromachined ultrasonic transducer(cMUT)encapsulation material,apolyvinyl chloride(PVC)material encapsulation structure with good acoustical transmission property underwater 10 m,small bending deformation is designed in this paper.The package structure parameters are calculated based on the theory of sound penetration and material properties.The three-dimensional finite element model of the encapsulation structure is established by using COMSOL Multiphysics 5.0.The inherent properties of the package structure and the underwater mechanical performance are obtained by the modal analysis and static analysis respectively.It shows that the first-order resonance frequency of the encapsulation structure is 792.47 kHz,which does not interfere with the working frequency of cMUT.The underwater system is protected by apressure equalization device.The maximum deformation underwater 10 mis 1.12 mm and the maximum stress is 14.4 MPa,which does not exceed the bending strength of PVC.The maximum error between the actual test sound pressure and the theoretical value is 4.8% and the distance measurement error is 1mm.Therefore,the designed encapsulation structure of cMUT can meet the requirements.
出处 《压电与声光》 CSCD 北大核心 2017年第4期624-628,共5页 Piezoelectrics & Acoustooptics
基金 国家自然科学基金资助项目(61127008)
关键词 电容式微机械超声换能器(CMUT) 透声系数 封装结构 有限元分析 capacitive micromachined ultrasonic transducer(CMUT) sound transmission coefficient encapsulation structure finite element analysis
  • 相关文献

参考文献6

二级参考文献36

  • 1刘丽辉,张伟刚,郭宏雷,曹晔,金龙,张昊,杨亦飞,赵启大,开桂云,董孝义.光纤布拉格光栅压力增敏的实验研究[J].中国激光,2004,31(10):1266-1268. 被引量:15
  • 2文庆珍,苑秉成,黄俊斌.光纤光栅压力传感器封装增敏技术[J].海军工程大学学报,2005,17(3):1-4. 被引量:10
  • 3谢斌,薛晨阳,张文栋,熊继军,张斌珍,陈尚.硅微仿生矢量水声传感器研制[J].传感技术学报,2006,19(05B):2300-2303. 被引量:19
  • 4Baar J V, Dijkstra M, Wiegerink R, et al. Arrays of Cricket-lnspired Sensory Hairs with Capacitive Motion Detection[ C]//Proceedings of the IEEE International Conference on Micro-Electro Mechanical systems(MEMS) Miami Beach, USA ,2005:646-649.
  • 5Chen N, Chen J, Liu C. Development and Charaeterization of High Sensitivity Bioinspired Artificial Hair Cell Sensor[ C ]//The 12^th Solid St-Ate Sensors, Actuator, and Micro-Systems Workshop, Hilton Head Island,USA,2006.
  • 6Krijnen G J M, Dijkstra M. MEMS Based Hair Flow-Sensors as Model Systems for Acou Stic Perception Studies[J]. Nano technology, 2006,17 : 84 -89.
  • 7Dijkgraaf S. The Functioning and Significa-Nce of the Lateral-LineOrgans [ J ]. Biol Rev, 1963,38 : 51 - 105.
  • 8Jielof R, Spoor A V. The Microphonic Activity of the Lateral Line [ J ]. Physiol, 1952,116 : 137-157.
  • 9Sand O. The Lateral Line and Sound Reception [ C ]//Tavolga W N, Popper A N, Fay R R Hearing and Sound Communication in Fishes [ M ]. New York : Springer-Verlag, 1981:459-480.
  • 10Garry K Fedder. Top-Down Design of MEMS [ C ]//Technical Proceedings of the MSM 2000 International Conference on Modeling and Simulation of Micro system,2000.

共引文献57

同被引文献6

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部