期刊文献+

控制单个随机解释变量条件下被解释变量平均改变量的估计方法 被引量:3

Average Change Estimation of the Explained Variable in Condition of Controlling Single Random Explanatory Variable
下载PDF
导出
摘要 文章在将两个相关随机变量中的一个适当分解为两个随机变量的基础上,对解释变量完全是随机变量的不完全多重共线问题,给出了用一个原解释变量以及与其不相关随机解释变量线性表示被解释变量的表示方法。进而研究了单独控制一个原解释变量改变一个单位条件下被解释变量的平均改变量(单控改变量),给出了估计单控改变量的方法——剔除相关变量法,证明了估计量的无偏性和一致性,并证明了估计量方差依概率收敛到有效估计量的方差。 On the basis that one of the two correlated random variables is properly decomposed into two random variables, aiming at the problem that explanatory variables are totally the less-than perfect multi-collinearity of random variables, this paper presents a method to express the explained variable by an original explanatory variable and random explanatory variable linearity irrelevant with it, and studies the average change of the explained variable when one of the original explanatory variables is controlled to change a unit. The paper also gives a method to estimate the single control change, namely the dropping-a-correlated-variable method, and proves the unbiasedness, consistency of the estimator, and also proves that estimator variance depending on probability converges to the variance of the efficient estimator.
出处 《统计与决策》 CSSCI 北大核心 2017年第15期27-31,共5页 Statistics & Decision
基金 教育部人文社会科学研究规划项目(15YJA630017)
关键词 多重共线性 分解随机变量 被解释变量 剔除相关变量法 less-than perfect multi-collinearity decomposed random variable explained variable dropping-a-correlated-variable method
  • 相关文献

参考文献6

二级参考文献21

  • 1[美]威廉H 格林著 王明舰等译.经济计量分析[M].北京:中国社会科学出版社,1998..
  • 2[美]古扎拉蒂著 林少宫译.经济计量学[M].北京:中国人民大学出版社,2000..
  • 3Aleksander J.Zelias.multicollinearity of variables an embarrasing problem of econometrics[M].Krakow Academy of Economics,1992.
  • 4Chow,G.C.and Smith,H.Applied Regression Analysis[M] (2nd edition),New York:Wiley,1981.
  • 5Edward R.Mansfield and Billy P.Helms.Detecting Multicollinearity[J] ,The American Statistician,1982,36(3):158-160.
  • 6Farrar,D.E.and Glauber,R.R.Multicollinearity in Regression Analysis:The Problem Re-visited[J].Review of Economics and Statistics,1967(49):92-107.
  • 7Lin,K.and Kmenta,J.Ridge Regression under Alternative Loss Criteria[J].Review of Economics and Statistics.1982(64):488-494.
  • 8Mark Z.Fabrycy.Multicollinearity caused by Specification Errors[J].Applied Statistics,1975,24(2):250-254.
  • 9Marquardt,D.W.Generalized Inverses,Ridge Regression,Biased Linear Estimation,and Nonlinear Estimation[J].Technometrics,1970(12):591-612.
  • 10Marquardt,D.W.,and Snee,R.D.Ridge Regression in Practice[J].The American Statistician,1975(29):3-20.

共引文献67

同被引文献18

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部