期刊文献+

基于约束局部模型的全自动桡骨分割 被引量:1

Fully Automatic Segmentation of the Radius Using Constrained Local Model
下载PDF
导出
摘要 骨龄是衡量少年儿童骨骼发育程度的重要指标.桡骨,作为骨龄评估中的特征骨块,其年龄对骨龄的预测具有重要意义.为预测桡骨骨龄首先需要准确分割桡骨,本文通过基于随机森林回归投票的约束局部模型算法,通过多形状模板的建立,实现桡骨的自动分割,为后续桡骨骨龄的预测提供可靠的依据. Bone age is one of the important index measuring the degree of bone development in children and adolescents.Radius,as the characteristic bone in bone age assessment,its age is of great significance for the forecast of bone age.Predict radial bone age requires accurate segmentation of radius.In this paper,we use Constrained Local Model algorithm based on Random Forest regression voting to achieve segmentation,providing reliable basis for the prediction.
作者 刘洁琳 刘杰 朱翔宇 LIU Jielin LIU Jie ZHU Xiangyu(College of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China)
出处 《新疆大学学报(自然科学版)》 CAS 北大核心 2017年第2期206-212,共7页 Journal of Xinjiang University(Natural Science Edition)
基金 国家自然科学基金(81571836)
关键词 桡骨 骨龄 随机森林回归投票 约束局部模型 Random Forest regression voting Constrained Local Model radial bone age
  • 相关文献

参考文献2

二级参考文献35

  • 1刘太昂,陆文聪,张良苗,陈念贻.支持向量分类用于醚菊酯类似物构效关系的研究(英文)[J].计算机与应用化学,2004,21(6):795-799. 被引量:9
  • 2张绍岩,杨士增,邵伟东,黄耕培,欧建华,金寿光,黄惟军,纪庆科,吴惠茹.中国人手腕骨发育标准——CHN法[J].体育科学,1993,13(6):33-39. 被引量:31
  • 3史鑫,罗述谦.支持向量机在医学图像分割中的应用[J].北京生物医学工程,2007,26(3):249-252. 被引量:4
  • 4Cunha E, Baccino E, Martrille L, et al. The prob- lem of aging human remains and living individuals: a review[J]. Forensic Sci Int,2009,193(1-3):1-13.
  • 5Schmeling A, Grundmann C, Fuhrmann A, et al. Cri- teria for age estimation in living individuals[J]. Int J Legal Med,2008,122(6) :457-460.
  • 6Wittschieber D, Schulz R, Vieth V, et al. Influence of the examiner's qualification and sources of error during stage determination of the medial clavicular epiphysis by means of computed tomography[J]. Int J Legal Med, 2014,128(1 ) : 183-191.
  • 7Thodberg HH, Jenni OG, Caflisch J, et al. Predic- tion of adult height based on automated determina- tion of bone age[J]. J Clin Endocrinol Metab,2009, 94(12) :4864-4874.
  • 8Vapnik VN. The nature of statistical learning theory[M]. New York: Springer, 1995.
  • 9Vapnik VN. Statistical learning theory[M]. USA: A Wiley-Interscience Publication, 1998.
  • 10Wan V, Campbell WM. Support vector machines for speaker verification and identification[C]//Neural Net- works for Signal Processing X, 2000.Proceedings of the 2000 IEEE Signal Processing Society Workshop, 2000,2 : 775-784.

共引文献15

同被引文献12

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部