摘要
针对小样本数据的油浸式变压器故障诊断,将修正因子引入果蝇优化算法,提出了一种基于IFOA优化SVM的油浸式变压器故障诊断方法。通过IFOA优化SVM的惩罚因子C和核函数参数g,实现小样本数据的油浸式变压器故障诊断。为了验证该算法的有效性和可靠性,将IFOA-SVM和GridSearch-SVM,FOA-SVM,SVM等算法进行比较。实验结果表明,IFOA-SVM比Grid Search-SVM,FOA-SVM和SVM具有更高的准确率,更加适合油浸式变压器的故障诊断。
In view of the small sample data of oil-immersed transformer fault diagnosis, correct factor was applied to Fruit Flying Optimization Algorithm, oil-immersed transformer fault diagnosis method was proposed to optimize SVM based on IFOA. Penalty factor C and the kernel function parameter g of the SVM were optimized by IFOA, realizing small sample data of oil-immersed transformer fault diagnosis. In order to verify the validity and reliability of this algorithm, IFOA-SVM and Crid Search- SVM, FOA-SVM, SVM algorithm were compared. Experimental results show that IFOA-SVM has higher accuracy than Grid Search-SVM, FOA-SVM and SVM ,The proposed algorithm is more suitable for oil-immersed transformer fault diagnosis.
作者
郭敏
王海军
GUO Min WANG Hai-jun(Inner Mongolia Electric Power Investment Group Co.Ltd., Hohhot 010000, China)
出处
《仪表技术与传感器》
CSCD
北大核心
2017年第7期108-111,115,共5页
Instrument Technique and Sensor
关键词
果蝇优化算法
修正因子
油浸式变压器
故障诊断
fruit fly optimization algorithm
correct factor
oil-immersed transformer, fault diagnosis