期刊文献+

疏水表面蒸发液滴下气液界面形态演化研究

Evaporation Induced Droplet Menisci Morphologic Evolution on the Hydrophobic Microgrooved Surface
原文传递
导出
摘要 研究蒸发液滴下气液界面的形态演化可为换热表面性能改进提供指导。本文以单个微槽及槽内液滴下气液界面为研究对象,运用能量分析法确定了疏水微槽表面放置液滴下气液界面的初始形态,提出了蒸发液滴上下气液界面同步演变理论,并利用该理论对液滴下气液界面失稳的原因、条件及下气液界面曲率的变化规律进行了探讨。结果表明,放置在疏水微槽表面上的液滴,其初始下气液界面与槽壁形成的微观接触角会介于0和本征接触角之间,在形态上呈现为曲率圆。当蒸发液滴下气液界面与槽壁形成的微观接触角大于一定数值后,会引发液滴下气液界面失稳,失稳后的液滴下气液界面形态受槽壁与水平面夹角的影响较大。 Studying evaporating droplet meniscus morphology can provide guidance for improving heat exchange surfaces performance. In this article, The energy analysis method was used to estimate the initial morphology of the droplet meniscus on the hydrophobic microgrooved surface. By analyzing droplet evaporating experimental results, the macro gas-liquid interface and the micro menisci are believed changing synchronously in this article. The reason and condition of the droplet meniscus unstability and the meniscus evolution trend were also studied. The results manifest that the initial micro contact angle formed by the meniscus and the groove wall is between 0 and the intrinsic contact angle and its morphology is curvature circle. The depinning of the meniscus will be triggered when the micro contact angle is bigger than a certain value. The meniscus evolution process is mostly influenced bv the angle formed bv the groove wall and the horizontal plane.
作者 朱毅 吴晓敏 褚福强 ZHU Yi WU Xiao-Min CHU Fu-Qiang(Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of C02 Utilization and Reduction Technology, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China)
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2017年第8期1719-1723,共5页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.51476084) 国家自然科学基金创新群体科学基金(No.51621062) 清华大学自主科研计划(No.20131089319)
关键词 蒸发液滴 疏水微槽 下气液界面 形态 evaporation droplet hydrophobic microgroove meniscus morphology
  • 相关文献

参考文献1

二级参考文献10

  • 1Jochen B P C, Lorenz J K, Bart HansJorg. Falling FilmEvaporation With Polymeric Heat Transfer Surfaces [J].Desalination, 2013, 308(1): 56-62.
  • 2Joen C T, Park Y, Wang Q, et al. A Review on PolymerHeat Exchangers for HVAC&R Applications [J]. Interna-tional Journal of Refrigeration, 2009, 32(5): 763-779.
  • 3Li Yinyong, Dai Shuxi and John J, et al. Superhy-drophobic Surfaces from Hierarchically Structured Wrin-kled Polymers [J]. Acs Applied Materials & Interfaces,2013,5(21): 11066-11073.
  • 4Murakami D, Jinnai H, Takahara A. Wetting Transitionfrom the Cassie-Baxter State to the Wenzel State on Tex-tured Polymer Surfaces [J]. Langmuir, 2014, 30(8): 2061-2067.
  • 5Bico J, Tordeux C, Que’re,D. Rough wetting [J]. Euro-physics Letters, 2001, 55 (2): 214-220.
  • 6Pashos G, Kokkoris G, Boudouvis A G. Minimum En-ergy Paths of Wetting Transitions on Grooved Surfaces[J]. Langmuir, 2015, 31(10): 3059-3068.
  • 7Luo Cheng, Xiang Mingming, Liu Xinchuan, et al. Tran-sition from Cassie-Baxter to Wenzel States on Microline-Formed PDMS Surfaces Induced by Evaporation or Press-ing of Water Droplets [J]. Microfluid Nanofluid, 2011, Mi-crofiuidics and Nanofluidics, 2011, 10(4): 831-842.
  • 8Luo Cheng, Xiang Mingming, Heng Xin. A Stable Inter-mediate Wetting State after a Water Drop Contacts theBottom of a MicroChannel or Is Placed on a Single Corner[J]. Langmuir, 2012, 28(25): 9554-9561.
  • 9Pant R, Singha S, Bandyopadhyay A, et al. Investigationof Static and Dynamic Wetting Transitions of UV Re-sponsive Tunable Wetting Surfaces [J]. Applied SurfaceScience, 2014, 292(3): 777-781.
  • 10Papadopoulos P, Mammen L, Deng Xu, et al. How super-hydrophobicity breaks down [J], Proceedings of the Na-tional Academy of Sciences of the United States of Amer-ica, 2013, 110(9): 3254-3258.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部