期刊文献+

基于最大池化稀疏编码的煤岩识别方法 被引量:14

A coal-rock recognition method based on max-pooling sparse coding
原文传递
导出
摘要 针对现今煤岩图像识别方法的缺乏与不足,为了挖掘新的煤岩图像识别方法以及更好地处理高维煤岩图像数据,提出了基于最大池化稀疏编码的煤岩识别方法.本方法在提取煤岩图像特征时加入了池化操作,在分类识别时采用了集成分类器,即多个弱分类器组成一个强分类器.实验结果表明:最大池化稀疏编码的特征提取方式能简单有效表达煤岩图像的纹理特征,大大增强煤岩图像的可区分性,获得较高的识别率,并且具有良好的识别稳定性.研究结果可为煤岩界面的自动识别提供新的思路和方法. Because of the lack of coal-rock methods,a novel coal-rock recognition method was proposed based on max-pooling sparse coding in order to explore new coal-rock image recognition methods and efficiently handle high-dimensional coal-rock image data.This method adds the pooling operation when extracting coal-rock image features and adopts the integrated classifier,which consists of multiple weak classifiers when classifying coal-rock images.The experimental results show that this feature-extraction method based on max-pooling sparse coding can simply and effectively express the characteristic information of coal-rock images,greatly enhance the distinguishability of coal-rock images,and achieve a high recognition rate.This method also has good recognition stability.The results obtained herein could provide a new idea and method for automatic coal-rock interface recognition.
作者 伍云霞 田一民 WU Yun-xia TIAN Yi-min(School of Mechanical Electronic & Information Engineering, China University of Mining & Technology ( Beijing), Beijing 100083, China)
出处 《工程科学学报》 EI CSCD 北大核心 2017年第7期981-987,共7页 Chinese Journal of Engineering
基金 国家重点研发计划资助项目(2016YFC0801800) 国家自然科学基金重点资助项目(51134024)
关键词 煤岩识别 图像处理 最大池化 稀疏编码 特征提取 集成分类 coal-rock recognition image processing max-pooling sparse coding feature extraction integrated classification
  • 相关文献

参考文献8

二级参考文献160

  • 1Sun Jiping,Su Bo.Coal–rock interface detection on the basis of image texture features[J].International Journal of Mining Science and Technology,2013,23(5):681-687. 被引量:20
  • 2任芳,熊晓燕,杨兆建.煤岩界面识别的关键状态参数[J].煤矿机电,2006,27(5):37-39. 被引量:7
  • 3Ojala T, Pietikainen M, Harwood D. A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 1996, 29(1): 51-59.
  • 4Pietik/iinen M, Ojala T, Xu Z. Rotation-invariant texture classification using feature distributions. Pattern Recogni- tion, 2000, 33(1): 43-52.
  • 5Ojala T, Valkealahti K, Oja E, Pietikginen M. Texture dis- crimination with multidimensional distributions of signed gray-level differences. Pattern Recognition, 2001, 34(3): 727-739.
  • 6Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray- scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
  • 7Pietikainen M, Hadid A, Zhao G Y, Ahonen T. Com- puter Vision Using Local Binary Patterns. Berlin: Springer- Verlag, 2011. 193-202.
  • 8Hafiane A, Seetharaman G, Zavidovique B. Median bi- nary pattern for textures classification. In: Proceedings of the 2007.International Conference on Image Analysis and Recognition. Montreal, Canada: Springer, 2007. 387-398.
  • 9Guo Z H, Zhang L, Zhang D, Zhang S. Rotation invariant texture classification using adaptive LBP with directional statistical features. In: Proceedings of the 17th IEEE In- ternational Conference on Image Processing. Hong Kong, China: IEEE, 2010. 285-288.
  • 10Varma M, Zisserman A. A statistical approach to material classification using image patch exemplars. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2009, 31(11): 2032-2047.

共引文献242

同被引文献109

引证文献14

二级引证文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部