摘要
针对一类具有近似非齐次指数特征的衰减序列建模预测问题,构建NGOM(1,1)模型,推导出其参数估计的最小二乘解与时间响应函数的表达式.鉴于背景值和初始条件对于该模型作用的复杂性和噪声扰动的不确定性,运用方程组的数据融合技术对背景值进行全局性优化,并利用平均相对误差平方和构建期望函数,实现模型优化目标函数和平均相对误差最小两个准则一致性条件下模型初始条件的最优选择.实例研究表明了所提出模型在处理衰减非齐次序列时具有较高的精度.
Aiming at solving the predicting problems for the decreasing non-homogenous series, the grey model NGOM(1,1) is proposed with the method of accumulated generating operation in opposite-direction. The parameters and time response function are estimated. For the background value and the initial condition have a great effect on the simulating and predicting accuracy of the grey model, the background value is optimized by using the equations, and the initial condition is modified by using the expectation function, which ensures the consistency between the two rules, namely, the minimum values of optimized objective function and the minimum average relative errors. The results of the case study show that the NGOM(1,1) model has better simulating accuracy compared to other optimized models, which demonstrates the effectiveness and practicability of the proposed model dealing with the decreasing non-homogeneous sequences.
作者
丁松
党耀国
徐宁
魏龙
DING Song DANG Yao-guo XU Ning WEI Long(College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China College of Management Science and Engineering, Nanjing Audit University, Nanjing 211815, China)
出处
《控制与决策》
EI
CSCD
北大核心
2017年第8期1457-1464,共8页
Control and Decision
基金
国家自然科学基金项目(71371098)
江苏普通高校研究生科研创新计划项目(KYZZ16_0153)
南京航空航天大学博士学位论文创新与创优基金项目(BCXJ16-09)
中央高校基本科研业务费专项资金项目(2017301)
江苏省高校自然科学研究项目(16KJD120001)
江苏省社科基金重点研究项目(16GLA001)
关键词
反向累加生成
非齐次指数
初始条件
背景值
accumulated generating operation in opposite-directiom non-homogeneous
initialcondition
background value