期刊文献+

多生物特征融合发展现状及其展望 被引量:2

Survey on Multi-feature Fusion in Biometrics and its Developments
下载PDF
导出
摘要 多生物特征融合技术利用多个可鉴别的身份信息,在一定程度上能弥补单一生物特征识别的不足,从而可以有效达到降低误识率和实现高精度鉴别系统的要求.多生物特征融合为信息化社会日益增长的保密和安全需求提供了较好的解决方案,其相关理论与方法已成为智能信息处理的一个重要研究课题.本文围绕多生物特征识别技术,选择传感器为切入点,特征结构为分支,分别从同源同构、同源异构、异源同构、异源异构四个方面介绍多生物特征融合的典型方法及其研究现状,并在此基础上介绍了深度学习在多生物特征融合中的最新应用现状,并对其发展趋势作了一定展望. Multi-biometrics fusion incorporating multiple distinguishable identity information, is able to remedy the shortcomings within the single biometric recognition system and often holds a strong ability to reduce the false accept rate. As a consequence, the high precision identification system can be realized. Evidently ,multi-feature fusion in Biometrics provides a better solution to the increasingly demand in privacy and security, and its related theory and methodology have become an important research topic in the intelligent information processing. In this paper, we select the sensor as the breakthrough point and utilize the feature type as the model branch to introduce the representative multi-feature fusion approaches and elaborate their current research states, in which the four aspects with respected to the homogenous features and heterogeneous features of single biometric source, homogenous features and heterogeneous features of multiple biometdc sources are comprehensively grouped for illustration. Finally, we provide some state-of-the-art application status for deep learning based multi-biometrics, and draw a technical conclusion in the future.
出处 《小型微型计算机系统》 CSCD 北大核心 2017年第8期1792-1799,共8页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61300138 61572205 61673185)资助 福建省自然科学基金项目(2017J01112)资助 华侨大学中青年创新人才培育项目(ZQN-309)资助
关键词 多生物特征融合 同构 异构 深度学习 multi-biometrics fusion homogenous features heterogeneous features deep learning
  • 相关文献

参考文献5

二级参考文献63

  • 1孙权森,曾生根,王平安,夏德深.典型相关分析的理论及其在特征融合中的应用[J].计算机学报,2005,28(9):1524-1533. 被引量:89
  • 2李晖晖,郭雷,刘航.基于二代curvelet变换的图像融合研究[J].光学学报,2006,26(5):657-662. 被引量:89
  • 3杨镠,郭宝龙,倪伟.基于区域特性的Contourlet域多聚焦图像融合算法[J].西安交通大学学报,2007,41(4):448-452. 被引量:25
  • 4JAIN A K. Biometric recognition [J]. Nature, 2007, 449(9) :38-40.
  • 5LU J, PLATANIOTIS K N, VENETSANOPOULOS A N. Face recognition using kernel direct discriminant analysis algorithms[J]. IEEE Trans on Neural Net, 2003, 14(1): 117-126.
  • 6JING Xiaoyuan, YAO Yongfang, ZHANG David. Face and palmprint pixel level fusion and kernel DCVRBF classifier for small sample biometric recognition [J]. Pattern Recognition, 2007, 40(11): 3209-3224.
  • 7JAIN A K, NANDAKUMAR K, ROSS A. Score normalization in multimodal biometric systems [J]. Pattern Recognition, 2005, 38(12): 2270-2285.
  • 8YAO Yongfang, JING Xiaoyuan, WONG H S. Face and palmprint feature level fusion for single sample biometrics recognition[J]. Neurocomputing, 2007, 70 (5) : 1582-1586.
  • 9CANDES E J, DEMANET L, DONOHO D L, et al. Fast discrete curvelet transforms, DMS01-40698 [R]. Pasadena, CA, USA: California Institute of Technology, 2005:1-43.
  • 10LI Shutao, YANG Bin. Multifocus image fusion by combining curvelet and wavelet transform [J]. Pattern Recognition Letters, 2008, 29(2): 1295-1301.

共引文献25

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部