期刊文献+

基于元胞自动机的动态背景运动目标检测 被引量:6

Moving target detection based on dynamic background of cellular automaton
下载PDF
导出
摘要 针对传统运动目标检测算法在动态背景条件下难以准确检测出运动目标的问题,提出了一种基于元胞自动机的动态背景运动目标检测算法。首先,根据SLIC算法分割视频图像,并应用多模态混合动态纹理模型对视频图像进行背景建模。然后,融合空时显著性检测与基于元胞自动机的自动更新机制得到优化的显著性图。最后,通过对优化后的显著性图做适当的阈值分割处理得到视频图像中的运动目标。实验仿真结果表明,在动态背景条件下该算法可以有效的抑制视频图像中非运动目标的显著性物体对检测结果带来的影响,检测运动目标的精度较高,并且具有一定的鲁棒性。 Aiming at the problem that it is hard to use the traditional moving target detection algorithm to accurately detect the moving target under the dynamic background, a kind of moving target detection algorithm for the cellular automaton under the dynamic background was proposed in the thesis. Firstly, according to SLIC algorithm, video images were divided in the thesis, and multi-mode hybrid dynamic texture model was used for background modeling for video images; Then, space-time salience detection was integrated with the optimized salience map which was obtained based on the automatic updating mechanism of the cellular automaton; Finally, through making appropriate threshold segmentation process for the optimized salience map, moving targets in video images was obtained. The experimental simulation result shows that under dynamic background, the algorithm can effectively restrain the influence of the salient object for non moving targets in video images on the detection result; moving targets can be detected with higher accuracy; what's more, the algorithm has certain robustness.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2017年第7期1934-1940,共7页 Optics and Precision Engineering
基金 吉林省科技发展计划青年科研基金资助项目(No.20150520057JH)
关键词 元胞自动机 显著性检测 动态背景 运动目标检测 cellular automata saliency detection dynamic background moving target detection
  • 相关文献

参考文献3

二级参考文献34

  • 1王洪建,李志敏.基于视频图像的车辆流量实时检测系统[J].光学精密工程,2005,13(z1):222-226. 被引量:15
  • 2KIM J B. Efficient region-based motion segmentation for video monitoring system [D]. Kyungpook National University, 2001.
  • 3SHAPIRO L G, STOCKMAN G C. Computer vision [M]. NJ:Upper Saddle River,Prentice Hall, 2001, 275-402.
  • 4HARTLEY R, ZISSERMAN A. Multiple View Geometry in Computer Vision [M]. Cambridge: Cambridge University Press, 2003, 1:150.
  • 5GORDON N. J., SALMOND D. J., Smith A. F. M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[C]. IEEE Proceedings on Radar and Signal Processing, 1993, 140(2): 107-113.
  • 6ARULAMPALAM M S, MASKELL S, GORDON N, et al.. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
  • 7JIA X, LU H, YANG M. Visual tracking via adaptive structural local sparse appearance model[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012: 1822-1829.
  • 8ISARD M,BLAKE A. Condensation-Conditional density propagation for visual tracking [J]. Int. J. Comput. Vis.. 1998, 29(1): 5-28.
  • 9ROSS D, LIM J, LIN R, et al.. Incremental learning for robust visual tracking [J]. Internat. J. Comput. Vision, 2008, 77 (3): 125-141.
  • 10LOW[D. Distinctive image features from scale-in- variant keypoints, cascade filtering approach [J]. International Journal of Computer Vision 2004, 60(2) : 91-110.

共引文献54

同被引文献33

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部