期刊文献+

平面参数空间的实时三维点云配准方法 被引量:3

A method for real-time 3D point cloud registration in a parameter space of planes
下载PDF
导出
摘要 针对具有多平面结构的室内环境的三维定位和环境建模,提出了一种在平面参数空间进行配准的实时三维点云配准方法。该方法首先使用一种改进的三维霍夫变换算法快速提取点云中的平面特征,然后使用迭代算法在平面的参数空间中寻找最近平面,最后使用这些平面的对应关系来估计两帧点云之间的位姿变换关系。在一个实验室场景中进行的对比实验表明,该算法能够达到与传统迭代最近点(ICP)算法相似的精度,而且速度大大提升。在仅使用普通笔记本CPU的情况下即可实现实时的点云拼接。 For 3 D localization and modelling of an indoor environment with a multi-plane structure, a new method for real-time 3D point cloud registration in a planar parameter space was proposed. The method uses an improved 3D hough transform to quickly extract the plane features in point clouds, then, searches the closest planes in the parameter space of the planes by using an iterative method, and finally, estimates the translation and rotation of the point clouds by registration of the correspoding planes. A comparison experiment performed in a laboratory environ- ment showed that the registration accuracy of the proposed method reached the traditional iterative closest point (ICP) method, and the registration speed was greatly improved. The new method can achieve the real-time registration of point clouds when using an ordinary laptop CPU.
作者 王力宇 曹其新 王雯珊 Wang Liyu Cao Qixin Wang Wenshan(State Key Laboratory of Mechanical System and Vibration, Research Institute of Robotics, Shanghai Jiaotong University, Shanghai 20024)
出处 《高技术通讯》 北大核心 2017年第4期351-358,共8页 Chinese High Technology Letters
基金 国家自然科学基金(61273331)资助项目
关键词 点云配准 平面提取 霍夫变换 三维地图重建 迭代最近点(ICP) point cloud registration, plane extraction, Hough transform, 3 D map reconstruction, iterative closest point (ICP)
  • 相关文献

参考文献1

二级参考文献12

  • 1Henry R Krainin M, Herbst E, et al. RGB-D mapping: Us- ing depth cameras for dense 3D modeling of indoor environ- ments[C ]//RSS Workshop on RGB-D Cameras. 2010.
  • 2Fioraio N, Konolige K. Realtime visual and point cloud S- LAM[C]//RSS Workshop on RGB-D Cameras. 2011.
  • 3Izadi S, Kim D, Hilliges O, et al. KinectFusion: Real-time 3D reconstruction and interaction using a moving depth camera [C]//Proceedings of the 24th Annual ACM Symposium on Us- er Interface Software and Technology. New York, USA: ACM, 2011: 559-568.
  • 4Newcombe R A, Izadi S, Hilliges O, et al. KinectFusion: Real- time dense surface mapping and tracking[C]//10th IEEE Inter- national Symposium on Mixed and Augmented Reality. Piscat- away, USA: IEEE, 2011: 127-136.
  • 5Zeng M, Zhao F K, Zheng J X, et al. Octree-based fusion for realtime 3D reconstruction[J]. Graphical Models, 2013, 75(3): 126-136.
  • 6Zeng M, Zhao F K, Zheng J X, et al. A memory-efficient Kinect- Fusion using octree[C]//First International Conference Compu- tational Visual Media. Berlin, Germany: Springer, 2012: 234- 241.
  • 7Whelan T, McDonald J. Kaess M, et al. Kintinuous: Spatially extended KinectFusion[C]//RGB-D Workshop at Robotics: Sci- ence and Systems. 2012.
  • 8Herrera D C, Kannala J, Heikkila J. Joint depth and color cam- era calibration with distortion correction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 2058-2064.
  • 9Curless B, Levoy M. A volumetric method for building com- plex models from range images[C]//Proceedings of ACM SIG- GRAPH. New York, USA: ACM, 1996: 303-312.
  • 10Fischler M A, Bolles R C. Random sample consensus: A paradigm for model fitting witfi applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.

共引文献19

同被引文献19

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部