期刊文献+

SoxC transcription factors in retinal development and regeneration 被引量:3

SoxC transcription factors in retinal development and regeneration
下载PDF
导出
摘要 Glaucoma and other optic neuropathies result in optic nerve degeneration and the loss of retinal ganglion cells(RGCs)through complex signaling pathways.Although the mechanisms that regulate RGC development remain unclear,uncovering novel developmental pathways may support new strategies to regenerate the optic nerve or replace RGCs.Here we review recent studies that provide strong evidence that the Sry-related high-mobility-group C(SoxC)subfamily of transcription factors(TFs)are necessary and sufficient for axon guidance and RGC fate specification.These findings also uncover novel SoxC-dependent mechanisms that serve as master regulators during important steps of RGC development.For example,we review work showing that SoxC TFs regulate RGC axon guidance and direction through the optic chiasm towards their appropriate targets in the brain.We also review work demonstrating that Sox11 subcellular localization is,in part,controlled through small ubiquitin-like post-translational modifier(SUMO)and suggest compensatory cross-talk between Sox4 and Sox11.Furthermore,Sox4 overexpression is shown to positively drive RGC differentiation in human induced pluripotent stem cells(hi PSCs).Finally,we discuss how these findings may contribute to the advancement of regenerative and cell-based therapies to treat glaucoma and other optic nerve neuropathies. Glaucoma and other optic neuropathies result in optic nerve degeneration and the loss of retinal ganglion cells(RGCs)through complex signaling pathways.Although the mechanisms that regulate RGC development remain unclear,uncovering novel developmental pathways may support new strategies to regenerate the optic nerve or replace RGCs.Here we review recent studies that provide strong evidence that the Sry-related high-mobility-group C(SoxC)subfamily of transcription factors(TFs)are necessary and sufficient for axon guidance and RGC fate specification.These findings also uncover novel SoxC-dependent mechanisms that serve as master regulators during important steps of RGC development.For example,we review work showing that SoxC TFs regulate RGC axon guidance and direction through the optic chiasm towards their appropriate targets in the brain.We also review work demonstrating that Sox11 subcellular localization is,in part,controlled through small ubiquitin-like post-translational modifier(SUMO)and suggest compensatory cross-talk between Sox4 and Sox11.Furthermore,Sox4 overexpression is shown to positively drive RGC differentiation in human induced pluripotent stem cells(hi PSCs).Finally,we discuss how these findings may contribute to the advancement of regenerative and cell-based therapies to treat glaucoma and other optic nerve neuropathies.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第7期1048-1051,共4页 中国神经再生研究(英文版)
关键词 Sox4 Soxl 1 retinal ganglion cell optic nerve REGENERATION SUMOYLATION cell transplantation stern cell Sox4 Soxl 1 retinal ganglion cell optic nerve regeneration SUMOylation cell transplantation stern cell
  • 相关文献

同被引文献5

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部