期刊文献+

Protective effects of Dendrobium nobile Lindl. alkaloids on amyloid beta(25–35)-induced neuronal injury 被引量:10

Protective effects of Dendrobium nobile Lindl. alkaloids on amyloid beta(25–35)-induced neuronal injury
下载PDF
导出
摘要 Dendrobium nobile Lindl.alkaloids(DNLA),the active ingredients of a traditional Chinese medicine Dendrobium,have been shown to have anti-oxidative effects,anti-inflammatory action,and protective effect on neurons against oxygen-glucose deprivation.However,it is not clear whether DNLA reduces amyloid-beta(Aβ)-induced neuronal injury.In this study,cortical neurons were treated with DNLA at different concentrations(0.025,0.25,and 2.5 mg/L)for 24 hours,followed by administration of Aβ(25-35)(10μM).Aβ(25-35) treatments increased cell injury as determined by the leakage of lactate dehydrogenase,which was accompanied by chromatin condensation and mitochondrial tumefaction.The damage caused by Aβ(25-35) on these cellular properties was markedly attenuated when cells were pretreated with DNLA.Treatment with Aβ(25-35)down-regulated the expressions of postsynaptic density-95 mRNA and decreased the protein expression of synaptophysin and postsynaptic density-95,all changes were significantly reduced by pretreatment of cells with DNLA.These findings suggest that DNLA reduces the cytotoxicity induced by Aβ(25-35) in rat primary cultured neurons.The protective mechanism that DNLA confers on the synaptic integrity of cultured neurons might be mediated,at least in part,through the upregulation of neurogenesis related proteins synaptophysin and postsynaptic density-95. Dendrobium nobile Lindl.alkaloids(DNLA),the active ingredients of a traditional Chinese medicine Dendrobium,have been shown to have anti-oxidative effects,anti-inflammatory action,and protective effect on neurons against oxygen-glucose deprivation.However,it is not clear whether DNLA reduces amyloid-beta(Aβ)-induced neuronal injury.In this study,cortical neurons were treated with DNLA at different concentrations(0.025,0.25,and 2.5 mg/L)for 24 hours,followed by administration of Aβ(25-35)(10μM).Aβ(25-35) treatments increased cell injury as determined by the leakage of lactate dehydrogenase,which was accompanied by chromatin condensation and mitochondrial tumefaction.The damage caused by Aβ(25-35) on these cellular properties was markedly attenuated when cells were pretreated with DNLA.Treatment with Aβ(25-35)down-regulated the expressions of postsynaptic density-95 mRNA and decreased the protein expression of synaptophysin and postsynaptic density-95,all changes were significantly reduced by pretreatment of cells with DNLA.These findings suggest that DNLA reduces the cytotoxicity induced by Aβ(25-35) in rat primary cultured neurons.The protective mechanism that DNLA confers on the synaptic integrity of cultured neurons might be mediated,at least in part,through the upregulation of neurogenesis related proteins synaptophysin and postsynaptic density-95.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第7期1131-1136,共6页 中国神经再生研究(英文版)
基金 financially supported by the National Natural Science Foundation of China,No.81473201 the Natural Science Foundation of Educational Commission of Guizhou Province of China,No.2010043 the Science and Technology Foundation of Guizhou Province of China,No.JZ[2014]2016 the Modernization of Traditional Chinese Medicine Project of Guizhou Province of China,No.[2011]5086
关键词 nerve regeneration Dendrobium nobile Lindl. alkaloids amyloid beta NEURONS SYNAPSE SYNAPTOPHYSIN postsynaptic density-95 cognitive impairment NEUROPROTECTION neural regeneration nerve regeneration Dendrobium nobile Lindl. alkaloids amyloid beta neurons synapse synaptophysin postsynaptic density-95 cognitive impairment neuroprotection neural regeneration
  • 相关文献

同被引文献112

引证文献10

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部