期刊文献+

频率不变宽带波束形成权重系数的稀疏优化 被引量:1

Sparse optimization for weight coefficient of wideband frequency invariant beamforming
原文传递
导出
摘要 在基本的傅里叶变换频率不变波束形成(FIB)基础上,从减少抽头权重系数数量,降低FIB运算量角度出发,提出基于最小l0范数的抽头权重系数稀疏优化模型,并采用正交匹配追踪(OMP)算法来求解该优化问题。在高增益、等波纹、低旁瓣FIB方向图的要求下,所提出的优化方法使得稀疏率降低到3.53%,且能够保证稀疏优化后的方向图误差小于1%。接着进一步开展阵元数量的稀疏优化,有效地减少了阵元通道数,进一步降低了算法实现的硬件复杂度。仿真结果验证了所提方法的正确性和有效性。 To reduce the computational complexity of the basic Fourier transform frequency invariant beamforming(FIB),the sparse optimization for tap weights of the FIB is proposed based on minimuml 0 norm.The optimization is solved by the orthogonal matching pursuit(OMP).,With the proposed method,the sparse rate of the effective tap weights decreases to 3.53% when the relative error of the FIB beam pattern is less than 1%.At the same time,the beam patterns of FIB synthesized by sparse tap weights can hold high gain,equiripple and low sidelobes.To reduce the number of tapped delay lines(TDLs),the sparse optimization for the TDLs is also presented,which effectively decreases the number of sensor elements,and reduces the implementation complexity.The simulation results verify the correctness and effectiveness of the proposed method.
出处 《航空学报》 EI CAS CSCD 北大核心 2017年第7期274-282,共9页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(61401207) 上海航天基金重点项目(SAST201437) 江苏省研究生培养创新工程(KYZZ16_0187)~~
关键词 相控阵 宽带信号处理 频率不变波束形成 稀疏优化 低复杂度 phased array wideband signal processing frequency invariant beamforming sparse optimization low complexity
  • 相关文献

参考文献2

二级参考文献39

  • 1文树梁,袁起,秦忠宇.宽带相控阵雷达的设计准则与发展方向[J].系统工程与电子技术,2005,27(6):1007-1011. 被引量:20
  • 2Candès E J,Wakin M B. An introduction to compressive sampling[J].IEEE Signal Processing Mgazine,2008,(02):21-30.
  • 3Ender J H G. On compressive sensing applied to radar[J].Signal Processing,2010,(05):1402-1414.doi:10.1016/j.sigpro.2009.11.009.
  • 4Herman M,Strohmer T. Compressed sensing radar[A].Caesars Palace,Las Vegas,Nevada,USA,2008.1509-1512.
  • 5Cabrera S D,Parks T W. Extrapolation and spectral estimation with iterative weighted norm codification[J].IEEE Transactions on Signal Processing,1991,(04):842-851.doi:10.1109/78.80906.
  • 6Gorodnitsky I F,Rao B D. Sparse signal reconstruction from limited data using FOCUSS:a re-weighted minimum norm algorithm[J].IEEE Transactions on Signal Processing,1997,(03):600-616.doi:10.1109/78.558475.
  • 7Rao B D,Kreutz-Delgado K. An affine scaling methodology for best basis selection[J].IEEE Transactions on Signal Processing,1999,(01):187-199.doi:10.1109/78.738251.
  • 8Cotter S F,Rao B D,Engan K. Sparse solutions to linear inverse problems with multiple measurement vectors[J].IEEE Transactions on Signal Processing,2005,(07):2477-2488.doi:10.1109/TSP.2005.849172.
  • 9Baraniuk R,Davenport M,DeVore R. A simple proof of the restricted isometry property for random matrices[J].Constructive Approximation,2008,(03):253-263.doi:10.1007/s00365-007-9003-x.
  • 10Rao B D,Engan K,Cotter S F. Subset selection in noise based on diversity measure minimization[J].IEEE Transactions on Signal Processing,2003,(03):760-770.doi:10.1109/TSP.2002.808076.

共引文献10

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部