期刊文献+

有限理性下不确定性博弈均衡的稳定性 被引量:8

The Stability of Equilibrium Point for Uncertain Game Under Bounded Rationality
原文传递
导出
摘要 本文首先建立了有限理性下的不确定性博弈模型,然后通过构造理性函数,并研究其性质,得到该模型的NS均衡稳定性结果.进一步,我们建立了有限理性下的广义不确定性的广义博弈模型,采用类似的方法,同样获得其稳定性结论. In this paper, we establish the model for uncertain game under the bounded rationality. Then, by constructing the rationality function and studying its properties, we obtained the stability result of the NS equilibrium in the model. Further, we establish the model for generalized uncertain generalized game under the bounded rationality, and obtained its stability result by similar method.
作者 王能发 WANG NENGFA(Department Of Mathematics, Guizhou University, Guiyang 550025, China School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, China)
出处 《应用数学学报》 CSCD 北大核心 2017年第4期562-572,共11页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(Nos.11501349 61472093 11361012) 贵州省教育厅自然科学基金青年项目(No.黔教合KY字[2015]421)资助项目
关键词 有限理性 不确定性 NS均衡 稳定性 bounded rationality uncertainty NS equilibrium stability
  • 相关文献

参考文献11

二级参考文献142

  • 1Nash J. Non-cooperative games[J]. Annals of Mathematics, 1951, 54(5): 286-295.
  • 2Schelling T. The strategy of conflict[M]. Cambridge: Harvard University Press, 1960.
  • 3Aumann R J. Subjectivity and correlation in randomized strategies[J]. J of Mathematical Economics, 1974, 1(3): 67- 96.
  • 4Selten R. Reexamination of the perfenctness concept for equilibrium points in extensive games[J]. Int J of Game Theory, 1975, 4(1): 25-55.
  • 5Harsanyi J C. Games with incomplete information played by Bayesian players[J]. Management Science, 1967, 14:159-182, 320-334, 486-502.
  • 6Berge C. Theorie generale des jeux on-personnes[M]. Pads: Gauthier Villars, 1957.
  • 7Aumann J P. Acceptable points in general cooperative n-person games[M]. Prinston: Prinston University Press,1959.
  • 8Larbani M, Nessah R. Sur l'equilibre fort selon Berge 'Strong Berge equilibrium' [J]. RAIRO Operations Research, 2001, 35(2): 439-451.
  • 9Zhukovskii V I. Linear quadratic differential games[M]. Naoukova Doumka: Kiev, 1994.
  • 10Larbani M, Lebbah H. A concept of equilibrium for a game under uncertainty[J]. European J of Operational Research, 1999, 117(1): 145-156.

共引文献66

同被引文献34

引证文献8

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部