期刊文献+

粒子群算法在系统辨识中的应用 被引量:1

Application of particle swarm optimization in system identification
下载PDF
导出
摘要 系统辨识是设计控制系统中的一个重要部分。经典的辨识方法有阶跃响应法、脉冲响应法、频率响应法、相关分析法、谱分析法、最小二乘法和极大似然法等。结合现场中得来的脱硝实验数据,本文在阶跃响应法基础之上,利用现代辨识中的粒子群算法对初步辨识出的参数进行优化,即二次辨识。应用MATLAB软件仿真,可得到经粒子群算法二次辨识后的辨识结果。 system identification is an important part in the design of the control system.There are step response method, impulse response method and frequency response method, correlation analysis and spectrum analysis, least square method and maximum likelihood method in the classical identification methods. Based on the experimental data from denitration and the step response method on the basis of preliminary identified parameters are optimized by the method of modem identification of particle swarm algorithm, namely secondary identification. Using the application of MATLAB simulation software, we can obtain the identification results of particle swarm algorithm two times after identification.
出处 《数字技术与应用》 2017年第6期144-145,149,共3页 Digital Technology & Application
关键词 系统辨识 阶跃响应法 粒子群算法 二次辨识 system identification Step respome method Particle Swarm Optimization secondary identification
  • 相关文献

参考文献2

二级参考文献23

  • 1罗亚中,袁端才,唐国金.求解非线性方程组的混合遗传算法[J].计算力学学报,2005,22(1):109-114. 被引量:63
  • 2曾毅.浮点遗传算法在非线性方程组求解中的应用[J].华东交通大学学报,2005,22(1):152-155. 被引量:20
  • 3Kennedy J, Eberhartr C. Particle swarm optimization[C]. Proc of IEEE Int Conf on Neural Networks. Perth: IEEE Piscataway, 1995: 1942-1948.
  • 4Jiao B, Lian Z G, Gu X S. A dynamic inertia weight particle swarm optimization algorithm[J]. Chaos Solitons Fractals, 2008, 37(3): 698-705.
  • 5Liang J J, Qin A K, Suganthan P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Trans on Evolutionary Computation, 2006, 10(3): 281-295.
  • 6Hamzacebi C, Kutay E Continuous functions minimization by dynamic random search technique[J]. Applied Mathematical Modelling, 2007, 31(10): 2189-198.
  • 7Hamzacebi C. Improving genetic algorithms, performance by local search for continuous function optimization[J]. Applied Mathematics and Computation, 2008, 196(1): 309-317.
  • 8Yao X, Liu Y, Lin G. Evolutionary programming made faster[J]. IEEE Trans on Evolutionary Computation, 1999, 3(2): 82-102.
  • 9Zhao X C. A perturbed particle swarm algorithm for numerical optimization[J]. Applied Soft Computing, 2010, 10(1): 119-124.
  • 10Noman N, Iba H. Accelerating differential evolution using. an adaptive local search[J]. IEEE Trans on Evolutionary Computation, 2008, 12(1): 107-125.

共引文献43

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部