期刊文献+

微波-淀粉辅助合成ZnS纳米晶及其光学性能研究 被引量:1

Microwave and starch-assisted synthesis and optical property of ZnS nanocrystallites
下载PDF
导出
摘要 以乙酸锌为锌源,硫代乙酰胺(TAA)为硫源,淀粉为分散剂,微波辅助合成了硫化锌(ZnS)纳米晶。研究了不同微波温度对ZnS结构和晶粒大小的影响,并对形成机理进行了探讨。通过X射线衍射仪(XRD)、透射电子显微镜(TEM)、电子扫描显微镜(SEM)、傅里叶红外光谱(FT-IR)、紫外-可见吸收光谱(UV-Vis)和荧光分光光度计(FL)对物相、形貌、化学键合性质和光学性能等方面,进行了表征分析。结果表明:制得的样品为纯闪锌矿立方相ZnS,晶格常数为0.5196nm;晶粒大小随着温度增加而增大;粒径分布较窄,粒径100~160nm;禁带宽度处为3.85eV,与体相材料的禁带宽度E_g=3.68eV相比,发生了蓝移,可能是量子限域效应和材料形貌所致;所测样品有1个主发射峰和肩峰,处于蓝绿光谱段,归因于表面缺陷和近带边发射。 With zinc acetate as zinc source,thioacetamide( TAA) as sulfur source and starch as a dispersing agent,ZnS nanocrystallites were prepared via microwave-assisted method. The effect of different microwave temperatures on the structure and crystallite sizes of samples were investigated,and the forming mechanism was discussed. By X-ray diffraction( XRD),high resolution transmission electron microscopy( TEM),scanning electron microscopy( SEM),fourier transform infrared spectroscopy( FTIR),ultraviolet-visible spectroscopy( UV-Vis) and fluorescence spectrophotometer( FL),the phase,morphology,chemical and optical properties were characterized. The results showed that the samples were pure zinc blende ZnS with cubic phase and lattice constant of 0. 5196 nm. Crystallite size increased with the increase of temperature. The samples had a narrow particle size distribution with the average particle size of 100 ~ 160 nm. The width of gap band of the sample was 3. 85 eV,and compared to bulk phase material( Eg= 3. 68 eV),the blue shift happened,due to the quantum confined effect and material morphologies. The measured sample had a primary emission peak and shoulder peak,in the blue and green spectrum section,caused by the surface defect and the near band edge emission.
出处 《化工新型材料》 CAS CSCD 北大核心 2017年第7期132-134,共3页 New Chemical Materials
基金 湖南省教育厅一般科研项目(14C0607) 湖南省教育厅重点科研项目(14A076) 湖南省科技创新平台与人才计划(2016TP1028)
关键词 晶体结构 硫化锌 淀粉 纳米晶 crystal structure ZnS starch nanocrystal
  • 相关文献

参考文献2

二级参考文献44

  • 1黄风华.硫脲表面修饰的ZnS∶Cd纳米晶的合成及表征[J].分子科学学报,2006,22(1):63-66. 被引量:7
  • 2Murakoshi K, Hosokawa H, Tanaka N, et al. Phase transition of ZnS nanocrystallites induced by surface modification at ambient temperature and pressure confirmed by electron diffraction[J]. Chem Commun, 1998,3 : 321.
  • 3Qadri S B, Skelton E F, Hsu D, et al. Size-induced transition temperature reduction in nanoparticles of ZnS[J]. Phys Rev B,1999,60(13) :9191.
  • 4Bellotti E, Brennan K F, Wang R, et al. Monte Carlo study of electron initiated impact ionization in bulk zineblende and wurtzite phase ZnS[J]. J Appl Phys, 1998,83(9).4765.
  • 5Moore D F, Ding Y, Wang Z L. Crystal orientation-ordered ZnS nanowire bundles[J]. J Am Chem Soc, 2004, 126(44):14372.
  • 6Cheng X J, Zhao Q, Yang Y K. A facile method for the synthesis of ZnS/polystyrene composite particles and ZnS hollow micro-spheres[J]. J Mater Sci, 2010,45 (3) : 777.
  • 7Zhang J, Jiang F H, Dai Z H. Fabrication and microstruture characterization of pilytypic ZnS nanocables: Symmetrical HWZ twinned nanobelts grown on the surface of CZB nanowire[J]. J Phys Chem C, 2010,114(1): 294.
  • 8Chen Xijian, Xu Huifang, Xu Ningsheng, et al. Kinetically controlled synthesis of wurtzite ZnS nanorods through mild thermolysis of a covalent organic-inorganic network[J]. Inorg Chem,2003,42(9) 13100.
  • 9Yang L, Tang Y H, Zhao S H. Synthesis and photoluminescence of ZnS macrolattice[J]. J Sol-Gel Sci Techn, 2010, 53(2):154.
  • 10Tong H, Zhu Y J, Yang L X, et al. Self-assembled ZnS nanostruetured spheres: Controllable crystal phase and morphology[J]. J Phys Chem C, 2007,111 (10) : 3893.

共引文献3

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部