期刊文献+

Building Classification Models with Combined Biomarker Tests: Application to Early Detection of Liver Cancer 被引量:2

Building Classification Models with Combined Biomarker Tests: Application to Early Detection of Liver Cancer
下载PDF
导出
摘要 Early detection of hepatocellular carcinoma (HCC) is critical for the effective treatment. Alpha fetoprotein (AFP) serum level is currently used for HCC screening, but the cutoff of the AFP test has limited sensitivity (-50%), indicating a high false negative rate. We have successfully demonstrated that cancer derived DNA biomarkers can be detected in urine of patients with cancer and can be used for the early detection of cancer (Jain et al., 2015; Lin et al., 2011; Song et al., 2012; Su, Lin, Song, & Jain, 2014; Su, Wang, Norton, Brenner, & Block, 2008). By combining urine biomarkers (uBMK) values and serum AFP (sAFP) level, a new classification model has been proposed for more efficient HCC screening. Several criterions have been discussed to optimal the cutoff for uBMK score and sAFP score. A joint distribution of sAFP and uBMK with point mass has been fitted using maximum likelihood method. Numerical results show that the sAFP data and uBMK data are very well described by proposed model. A tree-structured sequential test can be optimized by selecting the cutoffs. Bootstrap simulations also show the robust classification results with the optimal cuto~..
出处 《Journal of Statistical Science and Application》 2017年第3期91-103,共13页 统计科学与应用(英文版)
关键词 Classification Model Biomarker Data Analysis Joint Distribution Sensitivity SPECIFICITY LiverCancer. 肝细胞癌 治疗方法 尿检 癌症
  • 相关文献

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部