期刊文献+

认知无线电NC-OFDM中基于案例推理的无线资源分配 被引量:3

Radio Resource Allocation Based on Case-Reasoning in NC-OFDM Systems for Cognitive Radio
下载PDF
导出
摘要 为解决认知无线电NC-OFDM的无线资源分配算法计算复杂度偏高,不便于实际应用的这个问题,提出了一种能够降低计算复杂度的无线资源分配算法。该算法利用案例推理方法,求解认知无线电NC-OFDM系统的子载波分配和功率分配问题,利用粒子群优化方法,降低案例修订过程中的计算复杂度。仿真结果表明,随着案例库的丰富,提出的算法在保证频谱利用率的前提下明显缩短了收敛时间,有效降低了计算复杂度。 Currently,there are disadvantages of the high computational complexity and inconvenient practical application in radio resource allocation algorithms for the cognitive radio NC-OFDM system.In order to deal with these disadvantages,a radio resource allocation approach to reduce the computational complexity based on case reasoning was proposed in this paper.In the proposed algorithm,the case-based reasoning is used to solve the problems of subcarrier allocation and power allocation in the cognitive radio NC-OFDM system,while the particle swarm optimization method is utilized to reduce the computational complexity in the process of case revision.Simulation results show that,with the abundance of case library,the proposed algorithm not only reduces the convergence time on the premise of guaranteeing the spectral utilization,but effectively reduces the computational complexity as well.
出处 《移动通信》 2017年第14期82-88,共7页 Mobile Communications
基金 陕西省自然科学基础研究计划项目(2016JM6084 2015JM6337 2015JM6276) 中央高校基本科研业务费资助项目(No.310822151126) 西安建筑科技大学科技计划项目(DB05049)
关键词 认知无线电 NC-OFDM 无线资源分配 案例推理 粒子群优化 cognitive radio NC-OFDM radio resource allocation case-based reasoning particle swarm optimization
  • 相关文献

参考文献1

二级参考文献9

  • 1William Krenik, Anuj Batra, "Cognitive Radio Techniques for Wide Area Network [ C ] ", Design Automation Conference, 2005, pp. 409-412.
  • 2HAYKIN S. Cognitive radio:brain-empowered wireless communications[J]. IEEE Journal on Selected Areas in Communications, 2005, 23 (2) , pp. 201-220.
  • 3CABRIC D, MISHRA S M, BRODERSEN R W, "Implementation issues in spectrum sensing for cognitive radios[ C]", The 38th Sylmar Conference on Signals Systems and Computers. [ S. 1. ] ,2004.
  • 4MITOLA J. "Cognitive radio:making software radios more personal", IEEE Personal Communication, 1999,6 ( 4 ) , pp. 13-18.
  • 5P. Cheng, Z. Zhang, H. -H. Chen, P. Qiu, "Optimal distributed joint frequency, rate, and power allocation in cognitive OFDMA systems", IET Commun. , jul. 2008, vo12, no. 6, pp. 815-826.
  • 6Yonghong Zhang and Cyril Leung," Resource allocation in an OFDM-based cognitive radio systems", IEEE Trans. Communn, Jul. 2009, vol. 57 ,no. 7, pp. 1928-1931.
  • 7Rajbanshi Rakesh, Wyglinski Alexander M, Minden Gary J, "An Efficient Implementation of NC-OFDM Transceivers for Cognitive Radios [ C ] ",International Conference on Cognitive Radio Oriented Wireless Networks and Communications, 2006, pp. 1-5.
  • 8Shen Zukang, Andrews J G, "Adaptive Resource Allocation in Muhiuser OFDM Systems With Proportional Rate Constraints[ J] ", IEEE Trans on Wireless Communications, Apr, 2005, pp. 2726-2736.
  • 9Choe K D, Lin Y J, Park S K,"subcarriers Adaptive for Muhiuer OFDM Systems [ C ] ", Global Telecommunications Conference, Vo12. Dallas, IEEE 2004, pp. 1230- 1233.

共引文献1

同被引文献16

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部