期刊文献+

粒子群优化的移动机器人路径规划算法 被引量:31

Path planning algorithm of mobile robot based on particle swarm optimization
下载PDF
导出
摘要 针对移动机器人在复杂环境下采用传统方法路径规划收敛速度慢和局部最优问题,提出了斥力场下粒子群优化(PSO)的移动机器人路径规划算法。首先采用栅格法对机器人的移动路径进行初步规划,并将栅格法得到的初步路径作为粒子的初始种群,根据障碍物的不同形状和尺寸以及障碍物所占的地图总面积确定栅格粒度的大小,进而对规划路径进行数学建模;然后根据粒子之间的相互协作实现对粒子位置和速度的不断更新;最后采用障碍物斥力势场构造高安全性适应度函数,从而得到一条机器人从初始位置到目标的最优路径。利用Matlab平台对所提算法进行仿真,结果表明,该算法可以实现复杂环境下路径寻优和安全避障;同时还通过对比实验验证了算法收敛速度快,能解决局部最优问题。 Concerning the slow convergence and local optimum of the traditional robot path planning algorithms in complicated enviroment, a new path planning algorithm for mobile robots based on Particle Swarm Optimization( PSO)algorithm in repulsion potential field was proposed. Firstly, the grid method was used to give a preliminary path planning of robot, which was regarded as the initial particle population. The size of grids was determined by the obstacles of different shapes and sizes and the total area of obstacles in the map, then mathematical modeling of the planning path was completed.Secondly, the particle position and speed were constantly updated through the cooperation between particles. Finally, the highsecurity fitness function was constructed using the repulsion potential field of obstacles to obtain an optimal path from starting point to target of robot. Simulation experiment was carried out with Matlab. The experimental results show that the proposed algorithm can implement path optimization and safely avoid obstacles in a complex environment; the contrast experimental results indicat that the proposed algorithm converges fast and can solve the local optimum problem.
出处 《计算机应用》 CSCD 北大核心 2017年第8期2258-2263,共6页 journal of Computer Applications
基金 河北省科技计划项目(15220327 16222101D-2) 河北省高等学校青年拔尖人才计划项目(BJ2017105)~~
关键词 栅格法 粒子群优化 路径规划 步进因子 适应度函数 grid method Particle Swarm Optimization(PSO) path planning progress factor fitness function
  • 相关文献

参考文献3

二级参考文献85

  • 1戴博,肖晓明,蔡自兴.移动机器人路径规划技术的研究现状与展望[J].控制工程,2005,12(3):198-202. 被引量:75
  • 2马兆青,袁曾任.基于栅格方法的移动机器人实时导航和避障[J].机器人,1996,18(6):344-348. 被引量:91
  • 3黄席樾,蒋卓强.基于遗传模拟退火算法的静态路径规划研究[J].重庆工学院学报,2007,21(11):53-57. 被引量:10
  • 4J Tu, S Yang. Genetic algorithm based path planning for a mobile robot [ C ]. Taiwan: Proceedings of IEEE Intelligent Conference on Robotics and Automation, 2003. 1221 -1226.
  • 5Yanrong Hu, Simon X Yang. A knowledge based genetic algorithm for path planning of a mobile robot [ C ]. New Orleans : Proceedings of the 2004 IEEE International Conference on Robotics Automation,2004. 4350 - 4355.
  • 6K Sugihara, J Smith. Genetic algorithms for adaptive motion planning of an autonomous mobile robot[ C]. Monterey:Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation, 1997.
  • 7Qing Li, Wei Zhang, Yixin Yin, Zhiliang Wang. An improved genetic algorithm of optimum path planning for mobile robots[ C]. Jinan: Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications, 2006.
  • 8李同涛.基于粗糙集理论与遗传算法的机器人路径规划方法研究[D].郑州:郑州大学,2005.
  • 9Hofner C, Schmidt G. Path planning and guidance techniques for an autonomous mobile robot[J]. Robotic and Autonomous Systems, 1995, 14(2): 199-212.
  • 10Schmidt G, Hofner C. An advaced planning and navigation approach for autonomous cleaning robot operationa[C]. IEEE Int Conf Intelligent Robots System. Victoria, 1998: 1230-1235.

共引文献380

同被引文献285

引证文献31

二级引证文献345

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部