摘要
本文证明了下述结果:在适当条件下,若f∈ε_(?)~(?)(?),则g(f)(x)(s(f)(x),μ(f)(x))=∞,a,e.x∈R~(?)或g(f)(x)(s(f)(x),g_(?)~(?)(f)(x),μ(f)(x))<∞,a,e.x∈R~(?),在后一种情形,我们有g(f)(s(f),g_(?)~(?)(f),μ(f))∈ε_(?)~(?)(?)且‖g(f)‖(?)(‖s(f)(?)‖g_λ~(?)(f)‖(?)‖μ(f)‖(?))≤c‖f‖(?)其中C是不赖于f(x)的常数.
The main results obtained in this paper are follows: under suitable conditions, if f(x), then either g(f)(x)(s(f)(x), (f)(x), μ(f)(x)) ≡∞, α.e.xRn or g(f)(x)(s(f)(x), g*(f)(x),μ(f)(x))<∞, α.e.x∈Rn, in the later case, we have g(f)(x)(s(f)(x),g (f)(x), μ(f)(x))∈, furthermore,where C is a constant independent of f(x).
出处
《怀化学院学报》
1994年第5期15-23,共9页
Journal of Huaihua University