摘要
对二维标量双曲型守恒律方程,发展了一类满足局部极值原理的非结构网格有限体积格式.其构造思想是,以单调数值通量为基础,通过应用基于最小二乘法的二次重构和极值限制器,使数值解满足局部极值原理.为保证数值解在光滑区域达到三阶精度,该格式可结合局部光滑探测器使用.本文从理论上分析了格式的稳定性条件,数值实验验证了格式的精度和对间断的分辨能力.
A third order finite volume scheme is constructed for scalar hyperbolic conservation laws on two dimensional unstructured' meshes. The scheme is based on monotone numerical flux and is particularly straightforward to implement. By applying the quadratic reconstruction based on the least square method and the maximum limiter, the numerical solution can satisfy the local maximum principle. To obtained third order accuracy in the smooth region, the proposed scheme can be used in combination with the local smooth detector. In this paper, the stability condition of the scheme is analyzed theoretically, and its accuracy and the ability of capturing singularities are verified by numerical experiments.
出处
《计算数学》
CSCD
北大核心
2017年第3期309-320,共12页
Mathematica Numerica Sinica
基金
国家自然科学基金(11571366)
国防科技大学校科研计划(ZK16-03-53)
长沙理工大学综合交通大数据智能处理湖南省重点实验室开放基金资助项目
关键词
双曲型守恒律
有限体积法
极值原理
限制器
hyperbolic conservation laws
finite volume method
maximum principle
limiter