期刊文献+

非结构网格上一类满足局部极值原理的三阶精度有限体积方法

A CLASS OF THIRD ORDER FINITE VOLUME SCHEME SATISFYING THE LOCAL MAXIMUM PRINCIPLE ON UNSTRUCTURED MESHES
原文传递
导出
摘要 对二维标量双曲型守恒律方程,发展了一类满足局部极值原理的非结构网格有限体积格式.其构造思想是,以单调数值通量为基础,通过应用基于最小二乘法的二次重构和极值限制器,使数值解满足局部极值原理.为保证数值解在光滑区域达到三阶精度,该格式可结合局部光滑探测器使用.本文从理论上分析了格式的稳定性条件,数值实验验证了格式的精度和对间断的分辨能力. A third order finite volume scheme is constructed for scalar hyperbolic conservation laws on two dimensional unstructured' meshes. The scheme is based on monotone numerical flux and is particularly straightforward to implement. By applying the quadratic reconstruction based on the least square method and the maximum limiter, the numerical solution can satisfy the local maximum principle. To obtained third order accuracy in the smooth region, the proposed scheme can be used in combination with the local smooth detector. In this paper, the stability condition of the scheme is analyzed theoretically, and its accuracy and the ability of capturing singularities are verified by numerical experiments.
机构地区 NUDT
出处 《计算数学》 CSCD 北大核心 2017年第3期309-320,共12页 Mathematica Numerica Sinica
基金 国家自然科学基金(11571366) 国防科技大学校科研计划(ZK16-03-53) 长沙理工大学综合交通大数据智能处理湖南省重点实验室开放基金资助项目
关键词 双曲型守恒律 有限体积法 极值原理 限制器 hyperbolic conservation laws finite volume method maximum principle limiter
  • 相关文献

参考文献3

二级参考文献24

  • 1贺立新,张来平,张涵信.间断Galerkin有限元和有限体积混合计算方法研究[J].力学学报,2007,39(1):15-22. 被引量:28
  • 2宋松和,李荫藩.解二维标量双曲型守恒律的一类满足极值原理的无结构三角形网格有限体积方法[J].数值计算与计算机应用,1997,18(2):106-113. 被引量:6
  • 3REED W H, HILL T R. Triangular mesh methods for the neutron transport equation [R]. Technical Report LA - UR -73 -479, Los Alamos Scientific Laboratory; 1973.
  • 4HARTEN A. High resolution schemes for hyperbolic conser- vation laws [ J]. Journal of Computational Physics, 1983, 49 : 357 - 393.
  • 5张涵信.无波动、无自由参数的耗散差分格式.空气动力学学报,1986,:143-165.
  • 6QIU J, SHU C W. Hermite WENO schemes and their appli- cation as limiters for Runge - Kutta discontinuous Galerkin method : one dimensional case [ J], Journal of Computation- al Physics, 2003, 193 : 115- 135.
  • 7ADJERID S, DEVINE K, FLAHERTY J and KRIVODONO- VA L. A posteriori error estimation for discontinuous Galer- kin solutions of hyperbolic problems [ J]. Computer methods in applied mechanics and engineering, 2002, 191 : 1097 - 1112.
  • 8KRIVODONOVA L. Limiter for high - order discontinuous Galerkin methods [ J ]. Journal of Computational Physics, 2007, 226 : 879 - 896.
  • 9BARTH T, JESPERSON D. The design and application of upwind schemes on unstructured meshes[ A]. In 27th Aero- space Sciences Meeting[ C]. AIAA 89 - 0036, Reno, Ne- vada, 1989.
  • 10LUO H, BAUM J D, LOHNER R. A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids [ J ]. Journal of Computational Physics, 2008, 227 : 8875 - 8893.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部