摘要
连续交通流模型是一个双曲线型偏微分方程式,不易求解,因此一般通过有限差分法近似求解。以均匀到达车流遇停等车队产生向上游回溯冲击波,以及停等车队起动向下游疏解这2种严苛交通案例,研究Lax-F差分法对不同阶连续交通流模型的适用性分析。分析结果表明:Lax-F有限差分法无论是针对1阶准线性连续交通流模型(即LWR模型)还是高阶连续交通流模型,均能获得与解析解相近的近似解,且具有较好的稳定性与收敛性,适用性也良好。
The continuous traffic flow model is a hyperbolic partial differential equation,which is not easy to solve,so it is usually solved by finite difference method. This paper takes 2 severe traffic cases like average traffic flow meet with traffic catchment and generate backflow shock wave,and stopped traffic flow starts moving as examples to study the application of Lax-F difference method to different continuous traffic flow model. Results show: Lax-F infinite differential method is able to obtain similar solution with that by Analytical solution no matter in 1-order quasi-linear continuous traffic flow model( i. e. LWR model) or high order continuous traffic flow model,and it has good stability,convergence and applicability.
作者
付立家
王亚楠
FU Lijia1 WANG Yanan2
出处
《公路交通技术》
2017年第2期97-101,共5页
Technology of Highway and Transport
基金
重庆市社会事业与民生保障科技创新专项(cstc2015shms-ztzx30015)
关键词
连续交通流
LWR模型
双曲线型偏微分方程
有限差分法
continuous traffic flow
LWR model
hyperbolic partial differential equation
infinite differential method