期刊文献+

在线压缩感知方法及其在漏磁检测中的应用 被引量:4

On-line compressed sensing method and its application in magnetic flux leakage detection
下载PDF
导出
摘要 以长距离油管的漏磁检测系统为研究对象,研究了漏磁检测数据的在线压缩算法。针对嵌入式在线工作环境下,传统的数据压缩方法难以应用的问题,引入压缩感知(CS)理论,提出了漏磁检测数据在线CS压缩方法。确定了小波基作为漏磁信号的最佳稀疏表示基,并推导了小波稀疏基矩阵的数学表达公式;提出Welch界和PRP共轭梯度算法的测量矩阵优化算法;提出了漏磁检测数据的重要数据段筛选方法,极大地减少了数据存储量。仿真试验证明了所提出在线压缩算法极大地减少了在线环境压缩编码的运算复杂度,具有简单迅速、压缩比高、重构精度高等优点,符合漏磁检测数据在线压缩的实际要求。 In this dissertation, taking the magnetic flux leakage (MFL) detection system for long-distance oil pipeline as study object, the online compression algorithm of magnetic flux leakage detection data is studied. Aiming at the problem that traditional data compression method is difficult to apply in the embedded online work environment, compressed sensing (CS) theory is introduced and an online CS compression method for MFL detection data is proposed. The wavelet base is determined as the best sparse representation base of the magnetic flux leakage signal, and the mathematical expression of the wavelet sparse base matrix is derived ; A measurement matrix optimization algorithm based on Welch bound and PRP conjugate gradient algorithm is proposed; An important data segment screening method of the MFL detection data is proposed, which greatly reduces the data storage size. The simulation resuhs show that the proposed online compression algorithm greatly reduces the computation complexity of compression encoding in online environment, has the advantages of simple and rapid operation, high compression ratio, high reconstruction precision and etc. , and meets the actual requirements of MFL detection data online compression.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2017年第7期1597-1605,共9页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(51579047) 国家科技支撑计划课题(2013BAG25B01) 高等学校博士学科点专项科研基金(20132304120015) 黑龙江省博士后科研启动金(LBH-Q14040) MPRD专项支持(IEP-0401) 东南大学毫米波国家重点实验室开放课题(K201707) 中央高校基本科研业务费(HEUCF160414)项目资助
关键词 压缩感知 漏磁检测 在线压缩 数据筛选 compressed sensing magnetic flux leakage detection online compression data screening
  • 相关文献

参考文献8

二级参考文献86

  • 1HE Zhaoshui XIE Shengli FU Yu.Sparse representation and blind source separation of ill-posed mixtures[J].Science in China(Series F),2006,49(5):639-652. 被引量:24
  • 2袁枚 袁文.数据压缩技术及其应用[M].电子工业出版社,1995..
  • 3Nelson M 贾起东(译).数据压缩技术原理与范例[M].北京:科学出版社、龙门书局,1995..
  • 4Gibon J D 李煜晖(译).多媒体数字压缩原理与标准[M].北京:电子工业出版社,2000..
  • 5Leinecker R C 王如亮等(译).Visual C++5.0开发技术内幕[M].北京:机械工业出版社,1999..
  • 6谈华暠,刘海林.盲稀疏源信号分离算法的恢复性研究[J].广东工业大学学报,2007,24(3):28-31. 被引量:3
  • 7DONOHO D L. Compressed sensing [ J]. IEEE Transac- tions on Information Theory, 2006, 52(4) : 1289-1306.
  • 8BARANIUK R G. Compressive sensing [ J]. IEEE Sig- nal Processing Magazine, 2007, 24(4) : 115-121.
  • 9DONOHO D L, TSAIG Y. Extensions of compressed sensing [ J ]. Signal Processing, 2006, 86 (3) : 533 -548.
  • 10FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems [ J ]. Journal of Selected Topics in Signal Processing, 2007, 1 (4) :586-598.

共引文献153

同被引文献26

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部