期刊文献+

回采工作面推进过程中的瓦斯涌出预测分析 被引量:4

Prediction and analysis of gas emission in advancing process of stope working face
下载PDF
导出
摘要 针对现有回采工作面瓦斯涌出预测方法的数据大都是基于回采工作面单一传感器的瓦斯浓度序列,存在无法将工作面持续推进过程中空间位置变化的监测点位置进行记录的问题,提出了以回采工作面传感器各监测点瓦斯浓度序列数据为基础,结合工作面实际推进距离,运用BP神经网络模型综合预测工作面瓦斯涌出量的方法。该方法利用回采工作面瓦斯分源辨识方法,分别分析采空区瓦斯涌出和煤壁瓦斯涌出的变化规律;利用BP神经网络预测法,结合表征采空区瓦斯涌出和巷道煤壁瓦斯涌出规律的特征值对工作面日均瓦斯涌出进行预测。实例应用验证了该方法的正确性。 The data of existing gas emission prediction methods of stop working face are mostly based on gas concentration sequence of single sensor in stope working face,and these methods can not record position of monitoring point in process of continuous advancement of the working face.In view of aboveproblems,a method that used BP neural network model to predict gas emission in the working face was proposed,which was based on data of gas concentration sequence data of monitoring point of sensor and actual advance distance on stope working face.The method uses gas source identification method of the working face to analyze variation law of gas emission of in goaf and coal wall respectively;and uses BP neural network prediction method to predict average daily gas emission combining with characteristic values of variation law of gas emission of in goaf and coal wall.The example application verifies correctness of the method.
作者 黄贺江 HUANG Hejiang(Shanxi Shouyang Duanwang Coal Industry Group Co., Ltd., Shouyang 045400, Chin)
出处 《工矿自动化》 北大核心 2017年第8期90-93,共4页 Journal Of Mine Automation
关键词 煤炭开采 回采工作面 煤矿安全监控 瓦斯涌出 瓦斯预测 瓦斯分源辨识 瓦斯浓度序列 coal mining stope working face coal mine safety monitoring gas emission gas prediction gas source identification gas concentration sequence
  • 相关文献

参考文献9

二级参考文献68

共引文献121

同被引文献42

引证文献4

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部