期刊文献+

基于双因素Wang转换方法的长寿风险债券定价研究 被引量:3

Pricing Longevity Bonds Using Two-factor Wang Transform Approach
下载PDF
导出
摘要 在比较国外经典债券设计的基础上,基于离散型死亡率模型假设,设计一种可调整上触碰点的触发型长寿债券,运用带永久跳跃的APC模型和双因素Wang转换定价方法对长寿债券进行定价,实证结果表明:在不同的参数组合下的风险溢价均处在一个合理的范围,由于模型参数多、可用死亡率数据年限短,风险溢价的结果对无风险利率等参数敏感性较高。 Based on the assumption of discrete mortality model and comparison of foreign classic bond, we design a longevity bond with adjustment-upper trigger point and price the longevity bond by using the APC model with permanent jumping and double-factor Wang transform. The empirical results show that risk premiums are all in a reasonable range under different combination of parameters.The result of risk premium is sensitive to the parameters such as risk-free interest rate because of using the multi-parameters model and lack of the available mortality data.
作者 樊毅 张宁 王耀中 FAN Yi ZHANG Ning WANG Yaozhong(College of Economics and Trade, Hunan University, Changsha ,Hunan 410079, China College of Economics, Central South University of Forestry and Technology, Changsha, Hunan 410004, China College of Finance and Statistics, ttunan University, Changsha , Hunan 410079, China)
出处 《财经理论与实践》 CSSCI 北大核心 2017年第4期32-38,共7页 The Theory and Practice of Finance and Economics
基金 湖南省社会科学基金项目(11YBA343 14YBA093) 湖南省情与决策咨询项目(2012BZZ29) 湖南省教育厅优秀青年项目(17B286) 中南林业科技大学青年基金重点项目(2012ZD05) 国家社会科学基金项目(17BJL048)
关键词 长寿风险债券 双因素Wang转换 死亡率 定价 longevity risk bond two-factor wang transform mortality pricing
  • 相关文献

参考文献5

二级参考文献81

  • 1东明.随机利率下的联合寿险精算模型[J].系统工程,2006,24(4):68-72. 被引量:14
  • 2Schepper A D, Goovaerts M. Some further results on annuities certain with random interest[J]. Insurance : Mathematics and Economics, 1992, 11 : 283-290.
  • 3Schepper A D, Goovaerts M, Kaas R. A recursive scheme for perpetuities with random positive interest rates[J]. Scandinavian Actuarial Journal, 1997, (1) : 1-10.
  • 4Olivieri A. Uncertainty in mortality projections: an actuarial perspective[J]. Insurance :Mathematics and Economics, 2001,29(2):231-245.
  • 5Cairns A J G, Blake D, Dowd K. Pricing death: frameworks for the valuation and securitization of mortality risk [J]. ASTIN Bulletin, 2006,36 ( 1 ): 79-120.
  • 6Lee R D,Carter L R. Modeling and forecasting U. S. mortality[J]. Journal of the American Statistical Association, 1992,87 : 659- 671.
  • 7Renshaw A E, Haberman S. Lee-Carter mortality forecasting with age-specific enhancement[J]. Insurance: Mathematics and Economics, 2003, 33:255-272.
  • 8Brouhns N, Denuit M, Van Keilegom I. Bootstrapping the Poisson log-bilinear model for mortality forecasting [J]. Scandinavian Actuarial Journal, 2005:212-224.
  • 9Pitacco E. Survival models in a dynamic context: a survey[J]. Insurance:Mathematics and Economics, 2004,35:279-298.
  • 10Duffle D, Pan J, Singleton K. Transform analysis and asset pricing for affine jump-diffusions [J]. Econometrica, 2000,68 : 1343-1376.

共引文献26

同被引文献19

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部