期刊文献+

基于改进ACO优化BPNN的软件缺陷预测模型 被引量:7

Optimizing software defect prediction model of BP neural network based on improved ACO algorithm
下载PDF
导出
摘要 针对用BP神经网络进行软件缺陷预测时出现的易陷入局部最优、学习速度缓慢等缺陷问题,提出一种基于信息素初始化和局部路径优化的蚁群优化算法优化BP神经网络的软件缺陷预测模型。对待预测的数据集进行基于互信息和自信息优化的主成分分析操作,降低数据的维数,提高运算效率;根据改进后的蚁群优化算法,计算最优的BP神经网络权值和阈值;使用NASA提供的软件缺陷数据集,利用提出的模型进行缺陷预测,基于十折交叉方法进行验证。通过与几种传统方法对比验证了所提方法具有更快的收敛速度和更高的预测准确度。 The traditional BP neural network algorithm has many drawbacks when it is used in software defects prediction. For example, it falls into local optimum easily and learns slowly. In view of these problems, a software defects prediction model based on the BP neural network improved by ant colony optimization algorithm (ACO) was proposed. Specifically, the ACO algorithm was based on pheromone initialization and local path optimization. The mutual information and self-information were integrated with the principal component analysis (PCA) method to reduce the dimensions of data set and increase the operation efficiency. The optimal BP neural network weights and thresholds were calculated using the optimized ant colony optimization algorithm. The performances of the proposed model were tested on NASA data sets according to the ten-fold cross method. Experimental results show that the proposed method achieves higher convergence rate and accuracy compared with conventional methods.
作者 李克文 王秋宝 于明晓 LI Ke-wen WANG Qiu-bao YU Ming-xiao(College of Computer and Communication Engineering, China University of Petroleum, Qingdao 266580, Chin)
出处 《计算机工程与设计》 北大核心 2017年第8期2137-2141,共5页 Computer Engineering and Design
基金 山东省自然科学基金项目(ZR2013FL034)
关键词 软件缺陷预测模型 BP神经网络 蚁群优化算法 主成分分析 互信息 software defect prediction model BP neural network ant colony optimization PCA mutual information
  • 相关文献

参考文献5

二级参考文献42

  • 1李曼,王大治,杜小勇,王珊.基于领域本体的Web服务动态组合[J].计算机学报,2005,28(4):644-650. 被引量:141
  • 2张成文,苏森,陈俊亮.基于遗传算法的QoS感知的Web服务选择[J].计算机学报,2006,29(7):1029-1037. 被引量:103
  • 3陈彬,洪家荣,王亚东.最优特征子集选择问题[J].计算机学报,1997,20(2):133-138. 被引量:96
  • 4黄翰,郝志峰,吴春国,秦勇.蚁群算法的收敛速度分析[J].计算机学报,2007,30(8):1344-1353. 被引量:72
  • 5Challagulla V U B, Bastani F B, I-Ling Yen, Paul R A. Empirical assessment of machine learning based software defect prediction techniques//Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems. Washington, DC, USA, 2005:263-270.
  • 6Lyu Michael R. Handbook of Software Reliability Engineering. New York: IEEE Computer Society Press and McGrawHill Book Company, 1996.
  • 7Khoshgoftaar Taghi M, Seliya Naeen. Tree-based software quality estimation models for fault predietion//Proeeedings of the 8th International Symposium on Software Metrics. Washington, 13(3, USA, 2002x 123-128.
  • 8Stich Timothy Janes, Spoerre Julie K, Velasco Tomas. The application of artificial neural networks to monitoring and control of an induction hardening process. Journal of Industrial Technology, 2000, 16(1): 1-11.
  • 9Ohlsson Niclas, Alberg Hans. Predicting fault-prone software modules in telephone switches. IEEE Transactions on Software Engineering, 1996, 22(12): 886-894.
  • 10Khoshgoftaar Taghi M, Seliya Naeem. Software quantity classification modeling using the SPRINT decision tree algorithm//Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence. Washington, DC, USA, 2002:365-367.

共引文献180

同被引文献71

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部