摘要
Two porous organic polymer nanotubes(PNT-2 and PNT-3) were synthesized via Ni-catalyzed Yamamoto reaction, using2,4,6-tris-(4-bromo-phenyl)-[1,3,5]-triazine(TBT) as one monomer, and 2,7-dibromopyrene(DBP) or 1,3,6,8-tetrabromopyrene(TBP) as another monomer. The scanning electron microscope(SEM) images show that both PNT-2 and PNT-3 possess clear hollow tube structures. Luminescent measurements indicate that both PNT-2 and PNT-3 can serve as luminescent probe for highly selective and sensitive detection of Fe^(3+) by luminescent quenching effect. Absorption competition quenching(ACQ) mechanism is also proposed to explain luminescent quenching behavior, i.e., the overlap of the UV-spectra between Fe^(3+) and PNTs causes the energy competition, and therefore leads to luminescent quenching. Moreover, both PNT-2 and PNT-3 still show high selectivity and sensitivity for sensing Fe^(3+) in 10% ethanol aqueous solution, which means that the two porous PNTs are promising candidates as luminescent probes for detecting Fe^(3+) in practical applications.
Two porous organic polymer nanotubes (PNT-2 and PNT-3) were synthesized via Ni-catalyzed Yamamoto reaction, using 2,4,6-tris-(4-bromo-phenyl)-[1,3,5]-triazine (TBT) as one monomer, and 2,7-dibromopyrene (DBP) or 1,3,6,8-tetrabromopyrene (TBP) as another monomer. The scanning electron microscope (SEM) images show that both PNT-2 and PNT-3 possess clear hollow tube structures. Luminescent measurements indicate that both PNT-2 and PNT-3 can serve as luminescent probe for highly selective and sensitive detection of Fe3+ by luminescent quenching effect. Absorption competition quenching (ACQ) mechanism is also proposed to explain luminescent quenching behavior, i.e., the overlap of the UV-spectra between Fe3+ and PNTs causes the energy competition, and therefore leads to luminescent quenching. Moreover, both PNT-2 and PNT-3 still show high selectivity and sensitivity for sensing Fe3+ in 10% ethanol aqueous solution, which means that the two porous PNTs are promising candidates as luminescent probes for detecting Fe3+ in practical applications.
作者
Meng Wang
Lin Guo
Dapeng Cao
Meng Wang Lin Guo Dapeng Cao(State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technolog?~ BeLling 100029, China)
基金
supported by National Science Fund for Distinguished Young Scholars(21625601)
Major Project of National Natural Science Foundation of China(91334203)
Outstanding Talent Fund from Beijing University of Chemical Technology