期刊文献+

Influence of PVD-duplex-treated, Bionic Surface Structures on the Wetting Behavior for Sheet-Bulk Metal Forming Tools 被引量:1

Influence of PVD-duplex-treated, Bionic Surface Structures on the Wetting Behavior for Sheet-Bulk Metal Forming Tools
原文传递
导出
摘要 Bionic surface structures, inspired by the flora, were developed for Sheet-Bulk Metal Forming (SBMF) in order to locally control the friction condition by adjusting the wetting behavior. Five bionic structures were micromilled on ASP 2023 in annealed as well as hardened and tempered conditions. Subsequently, the structured surfaces were plasma-nitrided and coated with a CrA1N thin film. The influence of the treatment method on the structural geometry was investigated with the aid of a scanning electron microscope and 3D-profilometer. The wetting behaviors of water and deep drawing oil (Berufluid ST6007) on bionic surfaces were evaluated using contact angle measurements. The resulting micro-milled structures exhibit an almost identical shape as their bionic models. However, the roughness of the structured surfaces is influenced by the microstructure. The combination of plasma-nitriding and Physical Vapor Deposition (PVD) leads to an increase in roughness. All bionic struc- tures possess higher contact angles than that of the unstructured surfaces when wetted by water. This can be explained by the fact that the structural elevations block the spreading. When the bionic surfaces are wetted by deep drawing oil, the lubricant spreads in the structural cavities, leading to smaller contact angles. Furthermore, the anisotropy of the structure has an influence on the wetting behavior. Bionic surface structures, inspired by the flora, were developed for Sheet-Bulk Metal Forming (SBMF) in order to locally control the friction condition by adjusting the wetting behavior. Five bionic structures were micromilled on ASP 2023 in annealed as well as hardened and tempered conditions. Subsequently, the structured surfaces were plasma-nitrided and coated with a CrA1N thin film. The influence of the treatment method on the structural geometry was investigated with the aid of a scanning electron microscope and 3D-profilometer. The wetting behaviors of water and deep drawing oil (Berufluid ST6007) on bionic surfaces were evaluated using contact angle measurements. The resulting micro-milled structures exhibit an almost identical shape as their bionic models. However, the roughness of the structured surfaces is influenced by the microstructure. The combination of plasma-nitriding and Physical Vapor Deposition (PVD) leads to an increase in roughness. All bionic struc- tures possess higher contact angles than that of the unstructured surfaces when wetted by water. This can be explained by the fact that the structural elevations block the spreading. When the bionic surfaces are wetted by deep drawing oil, the lubricant spreads in the structural cavities, leading to smaller contact angles. Furthermore, the anisotropy of the structure has an influence on the wetting behavior.
出处 《Journal of Bionic Engineering》 SCIE EI CSCD 2017年第3期520-531,共12页 仿生工程学报(英文版)
关键词 bionic structures sheet-bulk metal forming CrA1N PVD-duplex treatment wetting behavior bionic structures, sheet-bulk metal forming, CrA1N, PVD-duplex treatment, wetting behavior
  • 相关文献

参考文献2

二级参考文献9

共引文献7

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部