期刊文献+

基于动态多策略差分进化模型的MOEA/D算法 被引量:3

MOEA/D based on dynamic multi-strategy differential evolution model
下载PDF
导出
摘要 在基于分解技术的多目标进化算法的框架中,引入一种动态多策略差分进化模型。该模型在分析不同差分进化策略的特点基础上,选择了三种差分进化策略,并对每种策略分配一子种群。在进化过程中,依据每种策略对邻域更新的贡献度,动态地调整其子种群的大小。对比分析采用不同差分进化算法的性能,结果表明运用多个策略之间相互协同进化,有利于提高算法性能。将新算法同NSGA-Ⅱ与MOEA/D算法在LZ09系列基准函数上进行性能对比,实验结果显示该算法的收敛性和多样性均优于对比算法。将新应用于Ⅰ型梁多目标优化设计问题中,获得的Pareto前沿均匀,且解集域较宽广,对比分析表明了算法的工程实用性。 In the framework of multi-objective evolutionary algorithm based on decomposition (MOEA/D), this paper intro- duced a dynamic multi-strategy differential evolution model (MOEA/D-DMDE). The model chose three differential evolution strategies and each sub-population was corresponding to a differential evolution strategy based on the analysis of the characteri- stics of different strategies. In order to improve the performance of the algorithm, it adjusted the size of sub-population dynami- cally on the basis of a differential evolution strategy contribution for updated of neighborhood. It adopted each strategy to partic- ipate in coordination during the evolution process. Via the comparative analysis of different schemes of differential strategy, MOEA/D-DMDE also performed well. Comparing with NSGA-1I and MOEA/D on the LZ09 benchmarks, the experimental results indicate that MOEA/D-DMDE has a better performance in terms of convergence and diversity. To validate its perfor- mance on constraint multi-objective optimization problems, the proposed MOEA/D-DMDE is applied for solving the I -Beam. The uniformly distributed Pareto sets obtained by MOEA/D-DMDE show its practicability for engineering problems.
作者 林震 侯杏娜 韦晓虎 Lin Zhen Hou Xingna Wei Xiaohu(Dept. of Experiential Practice, Guilin University of Electronic Technology, Guilin Guangxi 541004, China)
出处 《计算机应用研究》 CSCD 北大核心 2017年第9期2624-2628,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61261017) 桂林电子科技大学教育教学改革项目(JGB201431 JGB201530 ZJW43030)
关键词 MOEA/D 多目标优化 多策略差分进化 动态子种群 I型梁设计 MOEA/D multi-objective optimization multi-strategy differential evolution dynamic subpopulation I-Beam design
  • 相关文献

参考文献3

二级参考文献26

  • 1蒋思伟,蔡之华,曾丹,李曲,程远方.基于模拟退火的并行基因表达式编程算法研究[J].电子学报,2005,33(11):2017-2021. 被引量:15
  • 2郑向伟,刘弘.多目标进化算法研究进展[J].计算机科学,2007,34(7):187-192. 被引量:52
  • 3COELLO C A C, PULIDO G T, LECHUGA M S. Handling multiple obiectives with particle swarm optimization [J]. IEEE Transactions on Evolutionary Computation,2004,8(3):256-279.
  • 4TUSAR T, FILIPIC B. Differential evolution versus genetic algorithms in multiobjective optimization[J]. Lecture Notes in Computer Science, 2007,4403 : 257-271.
  • 5MONTANO A A, COELLO C A C. MODE-LD+SS:a novel o differential evolution algorithm incorporating local dominance and scalar selection mechanisms for multi-objective optimization[C]//Proceedings of CEC2010. Washington,D. C. ,USA: IEEE, 2010.
  • 6XUE F, SANDERSON A C, GRAVES R J. Pareto-based multi-objective differential evolution[C]//Proceedings of the 2003 Congress on Evolutionary Computation (CEC'2003). Piscataway, N. J. , USA: IEEE Press, 2003,2 : 862-869.
  • 7IORIOA W, LI X. Solving rotated multi-objective optimiza- tion problems using differential evolution[C]//AI 2004.. Ad- vanceds in Artificial Intelligence. Berlin, Germany: Springer- Verlag, 2004 : 862-872.
  • 8HUANG V L, SUGANTHAN P N, QIN A K, et al. Mul- tiobjective differential evolution with external archive and harmonic distance-based diversity measure[R]. Singapore: Nanyang Technological University, 2005.
  • 9KARIN Z, RAINER L. Variants of differential evolution for multi-objective optimization [C]//Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Muhicrite- ria Decision Making ( MCDM2007 ). Piscataway, N. J. , USA.. IEEE Press, 2007 :91-99.
  • 10KUKKONEN S, DEB K. Improved pruning of non-domina- ted solutions based on crowding distance for hi-objective optimization problems [C]//Proceedings of IEEE Congress on Evolutionary Computation. Washington, D. C. , USA: IEEE, 2006,3995-4002.

共引文献50

同被引文献16

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部