摘要
已有的压缩感知视频复原算法因过平滑效应难以保留视频帧的边缘与细节信息,对此提出一种基于混合稀疏性测量的压缩采样视频复原算法。编码端将视频序列分为关键帧与非关键帧,并使用相同的感知矩阵对帧的每块进行采样。解码端则设计了考虑局部稀疏性与全局稀疏性的混合稀疏性测量方案,并将其作为压缩感知视频复原问题的正则项;然后通过分裂Bregman迭代算法对关键帧进行解码,并考虑视频帧间的时间相关性对非关键帧进行细化处理。基于多组仿真实验的结果表明,本算法获得了较好的视频复原精度,并具有理想的计算时间性能。
The existing restore algorithms of compressive sensing video are difficuh to preserve the side and detail information of video frames dtie to the over-smoothing effect, this paper proposed a hybrid sparsity measurement based restore algorithm for compressive sampling video to solve that problem. In the encoding phase, it divided video sequence into key frames and non- key frames, and used the same sensing matrix to sample each patches of the frame. In the decoding phase, it designed a hy- brid sparsity measurement schema considering local sparsity and global sparsity, and replaced the regularization term by the proposed hybrid sparsity measurement. Then, it decoded the key frames by split Bregman iteration algorithm, and refined the non-key frames by considering video inter-frame temporal correlation. Several simulation experimental results show that the proposed algorithm realizes better video restore accuracy, at the same time it shows a ideal computational complexity performance.
作者
郭宏刚
杨芳
Guo Honggang Yang Fang(Computer Network Center, Hebei Normal University, Shijiazhuang 050024, China Dept. of Police Scientific Research, Hebei Public Secu- rity Police Vocational College, Shijiazhuang 050091, China)
出处
《计算机应用研究》
CSCD
北大核心
2017年第9期2871-2876,共6页
Application Research of Computers
基金
河北省科技计划资助项目(15457659D
152176251)
河北省教育厅资助项目(QN2014167)
关键词
压缩感知
虚拟现实
视频复原
稀疏性测量
稀疏编码
字典学习
视频帧重建
compressive sensing
virtual reality
video restore
sparsity measure
sparse coding
dictionary learning
video frame reconstruction