期刊文献+

保留边缘与细节的压缩采样视频复原算法 被引量:1

Compressive sampling video restore algorithm with edge and detail preserving
下载PDF
导出
摘要 已有的压缩感知视频复原算法因过平滑效应难以保留视频帧的边缘与细节信息,对此提出一种基于混合稀疏性测量的压缩采样视频复原算法。编码端将视频序列分为关键帧与非关键帧,并使用相同的感知矩阵对帧的每块进行采样。解码端则设计了考虑局部稀疏性与全局稀疏性的混合稀疏性测量方案,并将其作为压缩感知视频复原问题的正则项;然后通过分裂Bregman迭代算法对关键帧进行解码,并考虑视频帧间的时间相关性对非关键帧进行细化处理。基于多组仿真实验的结果表明,本算法获得了较好的视频复原精度,并具有理想的计算时间性能。 The existing restore algorithms of compressive sensing video are difficuh to preserve the side and detail information of video frames dtie to the over-smoothing effect, this paper proposed a hybrid sparsity measurement based restore algorithm for compressive sampling video to solve that problem. In the encoding phase, it divided video sequence into key frames and non- key frames, and used the same sensing matrix to sample each patches of the frame. In the decoding phase, it designed a hy- brid sparsity measurement schema considering local sparsity and global sparsity, and replaced the regularization term by the proposed hybrid sparsity measurement. Then, it decoded the key frames by split Bregman iteration algorithm, and refined the non-key frames by considering video inter-frame temporal correlation. Several simulation experimental results show that the proposed algorithm realizes better video restore accuracy, at the same time it shows a ideal computational complexity performance.
作者 郭宏刚 杨芳 Guo Honggang Yang Fang(Computer Network Center, Hebei Normal University, Shijiazhuang 050024, China Dept. of Police Scientific Research, Hebei Public Secu- rity Police Vocational College, Shijiazhuang 050091, China)
出处 《计算机应用研究》 CSCD 北大核心 2017年第9期2871-2876,共6页 Application Research of Computers
基金 河北省科技计划资助项目(15457659D 152176251) 河北省教育厅资助项目(QN2014167)
关键词 压缩感知 虚拟现实 视频复原 稀疏性测量 稀疏编码 字典学习 视频帧重建 compressive sensing virtual reality video restore sparsity measure sparse coding dictionary learning video frame reconstruction
  • 相关文献

参考文献7

二级参考文献143

  • 1王光新,王正明,段晓君.基于广义高斯噪声分布模型的迭代正则化图像复原[J].中国图象图形学报(A辑),2004,9(8):978-983. 被引量:8
  • 2苗晴,唐斌兵,周海银.空域中基于正则化技术的有效图像复原算法[J].系统工程,2005,23(11):91-94. 被引量:6
  • 3吴显金,王润生.基于边缘恢复和伪像消除的正则化图像复原[J].电子与信息学报,2006,28(4):577-581. 被引量:10
  • 4郭远军,唐治德.一种改进的正则化空域图像复原新方法[J].重庆大学学报(自然科学版),2007,30(1):46-49. 被引量:2
  • 5GEMAN D,YANG Cheng-da.Nonlinear image recovery with half-quadratic regularization[J].IEEE Trans on Image Processing,l995,4(7):932-946.
  • 6KANG M G,KATSAGGELOS A K.General choice of the regularization functional in regularized image restoration[J].IEEE Trans on Image Processing,1995,4(5):594-602.
  • 7CHAN T F,WONG C K.Total variation blind deconvolution[J].IEEE Trans on Image Processing,1998,7(3):370-375.
  • 8PERRY S W,GUAN L.Weight assignment for adaptive image restoration by neural networks[J].IEEE Trans on Neural Networks,2000,11(1):156-170.
  • 9WU Xian-jin,WANG Run-sheng,WANG Cheng.Regularized image restoration based on adaptively selecting parameter and operator[C]//Proc of the 17th IEEE International Conference on Pattern Recognition.2004:662-665.
  • 10CHEN Wu-fan,CHEN Ming,ZHOU Jie.Adaptively regularized constrained total least-squares image restoration[J].IEEE Trans on Image Processing,2000,9(4):588-596.

共引文献242

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部