期刊文献+

基于置信规则库和证据推理的空中目标意图识别方法 被引量:23

Aerial Target Intention Recognition Approach Based on Belief-Rule-Base and Evidential Reasoning
下载PDF
导出
摘要 空中目标意图识别是战场态势评估的一个重要部分,它直接关系到指挥员的作战决策。针对复杂战场环境下目标信息的多源性和不确定性,提出了一种基于置信规则库(BRB)和证据推理(ER)的目标意图识别方法。首先,建立了一种新的融合目标多源信息的BRB-ER意图识别模型;其次,建立了多参数优化模型优化系统初始参数,以提高识别精度。最后,采用某舰艇实际测得的目标信息对该方法进行了验证,结果表明,提出的方法能有效对空中目标意图进行识别。 Aerial target intention recognition is an important part of the battlefield situation assessment, which is directly related to the operational decision-making of the commanders. However, the target's information measured in a complicated combat field is from multiple sources and involves many uncertain factors. In this paper, an aerial target intention recognition approach is proposed based on Belief-Rule-Base ( BRB ) and Evidential Reasoning (ER). Firstly, a new target intention recognition model based on BRB-ER for multi- source information fusion is presented. Then, a multi-parameter optimization model is established to optimize the initial parameters for improving the recognition precision. Finally, a case study is examined to validate the efficiency of the proposed approach. The result shows that it can recognize the aerial targets' intentions precisely.
作者 赵福均 周志杰 胡昌华 王力 刘涛源 ZHAO Fu-jun ZHOU Zhi-jie HU Chang-hua WANG Li LIU Tao-yuan(Department of Control Engineering, Rocket Force University of Engineering, Xi'an 710025, China)
出处 《电光与控制》 北大核心 2017年第8期15-19,50,共6页 Electronics Optics & Control
基金 国家自然科学基金(61370031 60736026) 中国博士后科学基金面上项目(2015M570847) 陕西省自然科学基金项目(2015JM6354)
关键词 目标意图识别 置信规则库 证据推理 多传感器信息融合 target intention recognition belief-rule-base evidential reasoning multi-sensor data fusion
  • 相关文献

参考文献5

二级参考文献43

  • 1DORIGO M, MANIEZZO V, COLORNI A. Ant system:optimization by a colony of cooperating agent [ J ]. IEEE Trans on Systems,Man,and Cybernetics, 1996, 26( 1 ):29 - 41.
  • 2COLORNI A. Heuristics from nature for hard combinatorial optimization problems [ J ]. Int Trans in Opnl Res,1996, 3(1) :1 -21.
  • 3DORIGO M, GAMBARDELLA L M. A cooperative learning approach to the traveling salesman problem [ J ].IEEE Trans on Evolutionary Computation, 1997, 1 ( 1 ) :53 -66.
  • 4朱家强.[D].南京:南京航空航天大学,2004:41~62.
  • 5ISIDORI A. Nonlinear Control Systems [ M]. Berlin: Springer, 1995.
  • 6BRINKER J, WISE K. Stability and flying quality robustness of a dynamic inversion aircraft control law [ J ] . J of Guidance, Control and Dynamics, 1996,19(6): 1270 - 1278.
  • 7KIM B, CALISE A. Nonlinear flight control using neural networks [ J ]. J of Guidance, Control and Dynamics, 1997,20 ( 1 ): 26 - 33.
  • 8HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators [J]. Neural Networks, 1989,2(5) :359 - 366.
  • 9FUNAHASHI K. On the approximate realization of continuous mappings by neural networks [ J ]. Neural Networks, 1989,2 (3): 183 -192.
  • 10McFARLAND M, CALISE A. Neural networks and adaptive nonlinear control of agile antiair missiles [ J ] . J of Guidance, Control and Dynamics, 2000,23(3) :547 - 553.

共引文献101

同被引文献179

引证文献23

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部