摘要
低压电器是量大面广的基础元件,广泛应用在国民经济中,探讨提高其可靠性的方法有着实际意义。本文提出将模糊故障树、神经网络和D-S证据理论应用在低压电器可靠性中,应用D-S证据理论对现场失效数据和专家经验知识进行数据和信息的融合,在损耗失效期开始之前采取预防性维修措施,将使用寿命得以延长,从而改变浴盆曲线,达到提高低压电器可靠性的目的。并通过实例证明此方法是有效可行的。
Low voltage electrical appliance is a basic component with large quantity and wide range, it widely used in the national economy, and it is of practical significance to discuss the method to improve its reliability. In this paper, fuzzy fault tree, neural network and D -S evidence theory axe applied to the reliability of low-voltage electrical appliances, and D - S evidence theory is used to fuse the data and information of field failure data and expert experience knowledge. Take preventive maintenance measures before the loss failure period, the service life can be prolonged, thus changing the bath- tub curve, to improve the reliability of the low voltage electrical appliances. And through the examples prove that this method is effective and feasible.
作者
周媛
ZHOU Yuan(Shandong Institute of Inspection on Product Quality ,Jinan 250102, China)
出处
《电气开关》
2017年第4期93-95,98,共4页
Electric Switchgear
关键词
低压电器
可靠性
故障树
神经网络
D—S证据理论
low voltage electrical appliance
reliability
fault tree
neural network
D - S evidence theory