期刊文献+

基于知识迁移Q学习算法的多能源系统联合优化调度 被引量:26

Knowledge Transfer Based Q-learning Algorithm for Optimal Dispatch of Multi-energy System
下载PDF
导出
摘要 随着能源互联网的提出,传统的单一能源优化利用模式正在发生变革,多种能源网络协调优化模式展现出广阔的发展前景。在此背景下,首先以能源中心建模方法建立了多能源系统的联合优化调度框架,在此基础上构建了计及含阀点效应供能成本和碳排放目标的典型多能源系统联合优化调度模型。其次,对于此不连续可微、非凸的非线性问题,以知识迁移Q学习算法和内点法构成级联式算法进行求解,即上层Q学习以机组有功功率作为动作变量,下层以内点法求解机组有功功率确定后的多能源系统优化模型,并通过知识迁移提高求解效率。最后,以33能源中心测试系统为算例的仿真分析,验证了所提模型及算法的有效性。 The recent development of the Energy Internet has urged the conventional inefficient utilization of single energy to change towards the more developed energy usage of optimal dispatch of the multi-energy system. Against the above-mentioned background, an optimal joint dispatch of multi-energy system model framework is firstly proposed based on the energy hub modeling approach. Then a typical multi-energy system model is developed considering carbon emission and energy supply costs with valve point effect. To solve this non-linear problem with non-convex, discontinuously differentiable characteristic, the cascaded algorithm combined with the knowledge transfer based Q-learning algorithm and interior point method is applied on the model. That is, the active power of generators is taken as an action variable of Q-learning in the upper structure and solve the multi-energy system model with the interior point method in the lower structure. Meanwhile, the efficiency is greatly improved by knowledge transfer. Case studies have been carried out on a 33 energy hubs test system to verify the effectiveness of the proposed model and algorithm. This work is supported by National Basic Research Program of China (973 Program) (No. 2013CB228205) and National Natural Science Foundation of China (No. 51477055).
出处 《电力系统自动化》 EI CSCD 北大核心 2017年第15期18-25,共8页 Automation of Electric Power Systems
基金 国家重点基础研究发展计划(973计划)资助项目(2013CB228205) 国家自然科学基金资助项目(51477055)~~
关键词 多能源系统 优化调度 能源中心 级联式算法 知识迁移Q学习 内点法 multi-energy system optimal dispatch energy hub cascaded algorithm knowledge transfer based Q-learning interior point method
  • 相关文献

参考文献9

二级参考文献103

  • 1侯云鹤,鲁丽娟,熊信艮,程时杰,吴耀武.改进粒子群算法及其在电力系统经济负荷分配中的应用[J].中国电机工程学报,2004,24(7):95-100. 被引量:157
  • 2王欣,秦斌,阳春华,吴敏.基于混沌遗传混合优化算法的短期负荷环境和经济调度[J].中国电机工程学报,2006,26(11):128-133. 被引量:40
  • 3盛鹍,孔力,齐智平,裴玮,吴汉,息鹏.新型电网-微电网(Microgrid)研究综述[J].继电器,2007,35(12):75-81. 被引量:199
  • 4El-Saadavi M M, Tantawi M A, Tawfik E. A fuzzy optimization-based approach to large scale thermal unit commitment[J]. Electric Power Systems Research, 2004, 72(3): 245-252.
  • 5Abido M A. Environmental/economic power dispatch using multiobjective evolutionary algorithms[J]. IEEE Trans. on Power Systems, 2003, 18(4): 1529-1537.
  • 6Rughooputh H, King A. Environmental/economic dispatch of thermal units using an elitist multiobjective evolutionary algorithm[C]. Proceedings of 2003 IEEE ICIT, Maribor, Slovenia, 2003.
  • 7Talaq J H, E1-Hawary F, El-Hawary M E. A summary of environmental/economic dispatch algorithms[J]. IEEE Trans. on Power Systems, 1994, 9(3): 1508-1516.
  • 8Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach[J]. IEEE Trans. on Evolutionary Computation, 1999, 3(4): 257-271.
  • 9Laumanns M, Thiele L, Zitzler E. Running time analysis of multiobjeetive evolutionary algorithms on pseudo-Boolean functions [J]. IEEE Trans. on Evolutionary Computation, 2004, 8(2): 170-182.
  • 10Abido MA. Multiobjective evolutionary algorithms for electric power dispatch problem[J]. IEEE Trans. on Evolutionary Computation, 2006, 10(3): 315-329.

共引文献1606

同被引文献509

引证文献26

二级引证文献574

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部