期刊文献+

面向顾客满意度的废旧机床再制造设计参数规划方法 被引量:2

Customer Oriented Planning Method of Remanufacturing Design for Used Machine Tools
下载PDF
导出
摘要 基于目前大多数再制造机床仅注重机床本身性能的恢复,从未无法达到预期市场竞争力的问题,结合顾客需求和废旧机床再制造设计,构建了再制造设计参数决策框架,并充分考虑顾客需求与再制造设计参数之间的不确定性,应用模糊非线性回归法分析顾客需求与再制造设计参数之间以及不同再制造设计参数之间的模糊相关关系。同时,针对基于传统模糊非线性回归法的规划方程不具备处理模糊关系的能力,导致规划结果与实际情况偏离的情况,将模糊度融入规划方程,构建基于改进模糊非线性回归法的废旧机床再制造设计参数规划方程。以某机床再制造企业的废旧CAK6163的再制造设计过程为例,应用改进的再制造设计规划方程对其再制造设计参数进行规划。结果表明,由改进的规划方程得到的再制造设计参数,相对于传统规划方程,能够获得更高的顾客满意度,进而有效提升了再制造机床的市场竞争力。 Most of the remanufactured machine tools mainly emphasize the performance recovery, which causes the remanufactured machine tools cannot reach the prospective competitiveness. Combining the customer requirements and remanufacturing design of used machine tools, the decision frame of remanufactufing design parameters is constructed and the fuzzy relationships between customer requirements and remanufacturing design parameters, and the fuzzy correlations among remanufacturing design parameters are analyzed, considering the uncertainties between customer requirements and remanufacturing design parameters and applying fuzzy non-linear regression. Meanwhile, aiming to the situation that the planning results deviate the actual situation due to the incapability of traditional planning equations to process the fuzziness, the improved planning equations based on fuzzy non-linear regression were constructed by injecting the fuzziness to the traditional planning equations. The remanufacturing design process of a remanufacturing enterprise is taken as an example and the improved planning equations are applied. The results show that the improved planning equations can obtain higher customer satisfaction compared to the traditional planning equations, which effectively improves the competitiveness of the remanufactured machine tools.
出处 《中国表面工程》 EI CAS CSCD 北大核心 2017年第4期150-159,共10页 China Surface Engineering
基金 国家自然科学基金(51305279)~~
关键词 顾客满意度 再制造设计 废旧机床 模糊非线性回归 customer satisfaction remanufacturing design used machine tools fuzzy non-linear regression
  • 相关文献

参考文献8

二级参考文献88

共引文献197

同被引文献35

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部