期刊文献+

聚乙烯醇多孔膜的制备及其对二氧化钛的负载研究

Fabrication of Porous Poly (vinyl alcohol) Film to Loading Titanium Dioxide Sol
原文传递
导出
摘要 以聚乙烯醇(PVA)为聚合物基体,戊二醛为交联剂,乙酸为催化剂,聚乙二醇6000(PEG-6000)为致孔剂,制备了聚乙烯醇多孔膜(porous PVA films,PPF多孔膜);再将实验室自制的二氧化钛溶胶(TiO_2)负载于PPF多孔膜上,制备得到聚乙烯醇原位负载二氧化钛功能薄膜(PPF-TiO_2)。采用红外光谱、扫描电镜、分光光度计等分别考察了PPF多孔膜的交联条件、负载前后PPF-TiO_2功能薄膜的形貌,PPF-TiO_2功能薄膜对甲基橙的去除率。研究结果表明,为制备适宜交联度及孔径的PPF多孔膜,戊二醛浓度为5%(wt),PEG-6000用量为PVA用量的0.6倍为宜;PPF多孔膜对TiO_2负载的温度为40℃,负载时间为2h能够获得负载量为43%的PPF-TiO_2功能薄膜。此外,PPF-TiO_2功能薄膜比商品化TiO_2对甲基橙的降解率(100mg/L)更快,且具有可循环使用的优势。 Porous poly(vinyl alcohol) (PVA) films (PPF) were prepared that PVA was used as matrix, glutaraldehyde was used as cross-linking agent, acetic acid was used as catalyst and polyethylene glycol 6000 (PEG-6000) was used as porogen, followed by loading titanium dioxide (TiO2) on it to obtain PPF loaded with TiO2(PPF-TiO2). Infrared spectrometry, scanning electron microscope and spectrophotometer were used to investigate the cross-linking conditions, microstructure shapes before and after loading TiO2, and the degradability of PPF-TiO2 to methyl orange. The results showed that PPF with appropriate cross-linked degree and pore sizes could be fabricated with 5 % glutaraldehyde and PEG- 6000 (0.6 times of the weight of PVA). The loading weight of PPF to TiOz reached 43% of the total weight when the loading temperature was 40℃ and loading time was controlled at 2h. Furthermore, the degradability of PPF-TiO2 to methyl orange was faster than that of TiO2 purchased.
出处 《高分子通报》 CSCD 北大核心 2017年第7期46-51,共6页 Polymer Bulletin
基金 国家自然科学基金(51503044) 广东省橡塑新型材料制备与加工工程技术中心开放基金
关键词 多孔膜 二氧化钛 甲基橙 负载 Porous film Poly(vinyl alcohol) Titanium dioxide Loading
  • 相关文献

参考文献2

二级参考文献33

  • 1庄银凤,朱仲祺.第三次采油用的高分子凝胶[J].精细石油化工,1994,11(3):17-19. 被引量:5
  • 2GB/T 9276-1996. Methods of exposure to natural weathering of coating [S].
  • 3GB/T 1865-1997. Paints and varnishes artificial weathering and exposure to artificial radiation filtered xenon-arc radiation [S].
  • 4Berdahl P, Akbari H, Levinson R, Miller W A. Weathering of roofing materials-an overview [J]. Construction and Building Materials, 2008, 22 (4) : 423- 433.
  • 5Shirayama H, Tohezo Y, Taguchi S. Photodegradation of chlorinated hydrocarbons in the presence and absence of dissolved oxygen in water [J]. Water Research, 2001, 35 (8): 1941-1950.
  • 6Sobczynski A, Gimenez J, Cerveramarch S. Photodecomposition of phenol in a flow reactor: adsorption and kinetics[J]. Monatshejte fur Chemic, 1997, 128 (11): 1109-1118.
  • 7Tsai W T, Lee M K, Su T Y, Chang Y M. Photodegradation of bisphenol-A in a batch TiO2 suspension reactor [J]. Journal of Hazardous Materials, 2009, 168 (1): 269-275.
  • 8Chen L C, Chou T C. Kinetics of photodecolorization of methyl-orange using titanium-dioxide as catalyst [J]. Industrial & Engineering Chemistry Research, 1993, 31 (7): 1520-1527.
  • 9Toor A P, Verma A, Jotshi C K, Bajpai P K, Singh V. Photocatalytic degradation of direct yellow 12 dye using UV/TiO2 in a shallow pond slurry reactor [J]. Dyes and Pigments, 2006, 68 (1): 53-60.
  • 10Nam W, Kim J, Han G Y. Photocatalytic oxidation of methyl orange in a three-phase fluidized bed reactor [J]. Chemosphere, 2002, 47 (9) : 1019-1024.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部