期刊文献+

氧化锌纳米线振动问题研究 被引量:4

VIBRATION OF ZINC OXIDE NANOWIRES
下载PDF
导出
摘要 采用连续介质理论与分子动力学模拟相结合的方法,研究了氧化锌纳米线的振动问题.建立了氧化锌纳米线核壳模型,解释其等效杨氏模量及压电常数的尺寸效应.通过连续介质理论求得氧化锌纳米线振动固有频率,并与分子动力学模拟得到的结果进行对比.研究表明,氧化锌纳米线在极化方向的等效拉伸杨氏模量随着横截面尺寸的增加而逐渐增大,且通过核壳模型分别求得核、壳拉伸杨氏模量.拟合得到的等效拉伸杨氏模量与分子动力学方法获得的等效拉伸杨氏模量符合得很好.根据连续介质理论得到等效弯曲杨氏模量,发现等效弯曲杨氏模量也随着横截面尺寸的增加而增大.氧化锌纳米线极化方向的压电耦合能力比一般压电陶瓷好,压电常数随着横截面尺寸的增加逐渐减小.氧化锌纳米线在不同温度条件下的振动频率没有明显变化,在不同外电场条件下的振动频率有显著变化.分子动力学模拟得到不同横截面尺寸的氧化锌纳米线振动频率不同.根据连续介质理论,求得悬臂Timoshenko梁模型相应尺寸的振动频率,发现横截面的尺寸越大,连续介质理论与分子动力学模拟得到的振动频率越接近. The vibration of Zinc Oxide( Zn O) nanowires is studied via molecular dynamics( MD) simulation and continuum theory. The size effect of equivalent Young' s modulus and piezoelectric constant for the Zn O nanowires are described by core-shell model. The equivalent tensile Young's modulus of Zn O nanowires in polarization direction increases gradually with the increase of the cross section size. The equivalent tensile Young' s modulus predicted by continuum theory is in a good agreement with the MD result. The equivalent bending Young's modulus also increases with the increasing cross section size. Meanwhile,the piezoelectric constants of Zn O nanowires are larger than that of piezoelectric ceramics. The piezoelectric constants of Zn O nanowires decrease with the rising of the cross section size. In addition,the vibration of the cantilevered nanobeam made of Zn O is simulated by MD. The vibration frequencies of a Zn O nanowire keep constant at different temperatures.When the cross section size becomes larger,the vibration frequencies predicted by continuum theory get closer to those obtained by MD well.
出处 《动力学与控制学报》 2017年第4期373-380,共8页 Journal of Dynamics and Control
关键词 氧化锌纳米线 分子动力学 尺寸效应 压电效应 振动 ZnO nanowires molecular dynamics scale effect piezoelectric effect vibration
  • 相关文献

参考文献3

二级参考文献27

  • 1曹树谦,高健.压电层合圆板的非线性动力学模型与主共振响应[J].天津大学学报,2007,40(2):139-147. 被引量:4
  • 2Cook-Chennault K A, Thambi N, Sastry A M. Powering MEMS portable devices-a review of nonregenerative and re- generative power supply systems with special emphasis on piezoelectric energy harvesting systems . Smart Materials and Structures, 2008, 17 (4) :043001.
  • 3Ammar Y, Buhrig A, Marzencki M, et al. Wireless sensor network node with asynchronous architecture and vibration harvesting micro power generator. In: Proceedings of the 2005 Joint Conference on Smart Objects and Ambient intel- ligence: Innovative Context-Aware Services: Usages and Technologies ,2005 : 287 - 292.
  • 4Lu F, Lee H P, Lim S P. Modeling and analysis of micro piezoelectric power generators for micro-electromechanical- systems applications. Smart Materials and Structures, 2004, 13 :57 - 63.
  • 5Roundy S, Wright P K, Rabaey J. A study of low level vi- brations as a power source for wireless sensor nodes. Com- puter Communicate, 2003, 26(11 ) : 1131 - 1144.
  • 6Sodano H A, Park G, Inman D J. Estimation of electric charge output for piezoelectric energy harvesting. Strain, 2004, 40 : 49 - 58.
  • 7Roundy S, Wright P K. A piezoelectric vibration based generator for wireless electronics. Smart Materials and Structures, 2004, 13:1131-1142.
  • 8duToit N E. Modeling and design of a MEMS piezoelectric vibration energy harvester [ PhD Thesis ]. Cambridge: Massachusetts Institute of Technology, 2005.
  • 9Ajitsaria J, Choe S Y, Shen D and Kim D J. Modeling and analysis of a bimorph piezoelectric cantilever beam for volt- age generation. Smart Materials and Structures, 2007, 16 : 447 - 454.
  • 10Erturk A, Inman D J. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Materials and Structures, 2009, 18 (2) : 1 -18.

共引文献24

同被引文献18

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部