期刊文献+

一种社交网络中细粒度人脸隐私保护方案

A Fine-Grained Face Privacy Protection Scheme in Social Networks
下载PDF
导出
摘要 庞大的用户规模、海量的信息交互、多元化的系统服务导致社交网络中存在巨量的以图像形式为主的共享数据。而由于现有人脸图像敏感信息的访问控制粒度较粗,使得共享数据在社交网络中广泛传播的同时,人脸敏感信息泄露问题严重,甚至引发恶性事件。文章通过构造发布者和访问者与访问资源之间的细粒度社交关系,将访问控制单元细化到人脸图像块,结合AES加密、属性基加密和分布式人脸识别,提出了一种对图像中人脸敏感信息进行细粒度隐私保护的方案。该方案实现了图片分享的过程中,人脸敏感信息只能被特定访问者获取的细粒度、动态访问控制策略,保证了图片数据在分享和访问过程中的隐私信息的安全性。 In social networks, the large scale of users, the interaction of mass information and the diversity of services lead to a large amount of shared data, which mainlyformed by images. The coarse-grained access control scheme for sensitive facial information of images makes the shared data spread widely in existing social networks and also causes severe problems in revealing facial sensitive information, and even leads to vicious incidents. By establishing fine-grained relationships among publishers, visitors and accessing resources, subdividing access control cell into facial patches. Proposed a scheme for fine-grained protection offacial sensitive information of images, combining the AES encryption with the attribute-based encryption and the mixing distributed face recognition.A finegrained facial sensitive information protection scheme is proposed. The scheme realizes the fine-grain and dynamic access control strategy which can ensure the sensitive facial information only be revealed to special visitors while images sharing, achieves the security of facial sensitive information while sharing and accessing.
出处 《信息网络安全》 CSCD 2017年第8期26-32,共7页 Netinfo Security
基金 国家自然科学基金[61373170]
关键词 社交网络 隐私保护 访问控制 人脸识别 social network privacy preserving access control face identification
  • 相关文献

参考文献3

二级参考文献29

  • 1潘晓,肖珍,孟小峰.位置隐私研究综述[J].计算机科学与探索,2007,1(3):268-281. 被引量:65
  • 2YoannLebrun, Emmanuel Adam, Ren e Mandiau, et al. A model formanaging interactions between tangible and virtual agents on an RFIDinteractive tabletop: Case study in traffic simulation [J] Journal of Computerand System Sciences , 2015, 81(3): 585-598.
  • 3NordierL J, Sinha S. Radio frequency identification (RFID) basedconference registration system[C]//AFRICON 2007. IEEE, 2007: 1-7.
  • 4NingzhongLiu, Xingming Zheng, Han Sun, et al. Two-dimensionalbar code out-of - focus deblurring via the Increment Constrained LeastSquares filter[}].Pattern Recognition Letters , 2013, 34(2): 124-130.
  • 5WonjunHwanga, Xiangsheng Huangb, Stan Z Lib, et al. Facerecognition using Extended Curvature Gabor classifier bunch[J]. PatternRecognition, 2015,48⑷:1247-1260.
  • 6MOKBEL M F, CHOW C Y, AtCEF W G. The new Casper: query processing for location services without compromising privacy[C] / /Proc of the 32nd International Conference on Very Large Data Bases, 2006:763 -774.
  • 7CHOW C, MOKBEL M F. Enabling privacy continuous queries for revealed user location [C] //Proc of International Symposium on Advances in Spatial and Temporal Databases. Berlin: Springer-Verlag, 2007.
  • 8Xiao Z, Mend X, Xu J. Quality aware privacy protection for location- based services [M].Berlin Heidelberg: Sprinter, 2007.
  • 9Kido H, Yanagisawa Y, Satoh T. An anonymous communication technique using dummies for location-based Services[C]//IEEE International Conference on Pervasive Services, 2005: 88-97.
  • 10Mi YoungJang, SungJae Jang, Jae Woo Chang. A New KNN query processing algorithm enhancing privacy privacy protection in location- based services[C]//IEEE First International Conference on Mobile Services,2012:17 -24.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部