摘要
文章在完成木马理论分析和电路设计的基础上,研究机器学习模式分类理论,并将其应用于集成电路侧信道信息的数据处理和分析,构建了基于支持向量机的硬件木马检测模型,同时通过交叉验证的方法进行模型优化。最终在自主设计的FPGA检测平台上进行基于功耗信息的实验验证,在标准电路中植入面积为0.69%的硬件木马,可以使得检测识别率达到98.64%。
In this paper the hardware Trojans theory and circuit design are described firstly,then the machine learning pattern classification theory are studied and applied into the data processing and analysis of side channelin integrated circuits. The two classification detection model of the hardware Trojans will be set up based on Support Vector Machine, and the model will be optimized by Cross Validation method. Finally the experiments are implemented in FPGA platform. When the Trojan circuit of area 0.69% is implanted into the standard circuit, the detection and recognition rate can reach the value of 98.64% according to the CV algorithm.
出处
《信息网络安全》
CSCD
2017年第8期33-38,共6页
Netinfo Security
基金
国家自然科学基金[61376032
61402331]
天津市自然科学基金重点资助项目[12JCZDJC20500]
关键词
硬件木马
侧信道分析
支持向量机
交叉验证
hardware Trojans
side-channel analysis
support vector machine
cross validation