期刊文献+

基于支持向量机的硬件木马检测建模与优化 被引量:2

Research on Hardware Trojans Detection Based on Support Vector Machine
下载PDF
导出
摘要 文章在完成木马理论分析和电路设计的基础上,研究机器学习模式分类理论,并将其应用于集成电路侧信道信息的数据处理和分析,构建了基于支持向量机的硬件木马检测模型,同时通过交叉验证的方法进行模型优化。最终在自主设计的FPGA检测平台上进行基于功耗信息的实验验证,在标准电路中植入面积为0.69%的硬件木马,可以使得检测识别率达到98.64%。 In this paper the hardware Trojans theory and circuit design are described firstly,then the machine learning pattern classification theory are studied and applied into the data processing and analysis of side channelin integrated circuits. The two classification detection model of the hardware Trojans will be set up based on Support Vector Machine, and the model will be optimized by Cross Validation method. Finally the experiments are implemented in FPGA platform. When the Trojan circuit of area 0.69% is implanted into the standard circuit, the detection and recognition rate can reach the value of 98.64% according to the CV algorithm.
出处 《信息网络安全》 CSCD 2017年第8期33-38,共6页 Netinfo Security
基金 国家自然科学基金[61376032 61402331] 天津市自然科学基金重点资助项目[12JCZDJC20500]
关键词 硬件木马 侧信道分析 支持向量机 交叉验证 hardware Trojans side-channel analysis support vector machine cross validation
  • 相关文献

参考文献8

二级参考文献97

  • 1李轩,郝克刚,葛玮.面向对象软件度量的分析和研究[J].计算机技术与发展,2006,16(11):38-41. 被引量:7
  • 2毛勇,周晓波,夏铮,尹征,孙优贤.特征选择算法研究综述[J].模式识别与人工智能,2007,20(2):211-218. 被引量:95
  • 3王琪.软件质量预测模型中的若干关键问题研究[D].上海:上海交通大学.2006.
  • 4Tehranipoor M, Koushanfar F. A survey of hardware Trojan taxonomy and detection[J]. IEEE Design Test of Computers, 2010, 27(1) : 10-25.
  • 5Aarestad J, Acharyya D, Rad R, et al. Detecting Tro)ans through leakage current analysis using multi- ple supply pad IDDQ[J]. IEEE Transactions on Inor- mation Forensics and Security, 2010, 5(4) : 893-904.
  • 6Rad R, Plusquellic J, Tehranipoor M. A sensitivity analysis of power signal methods for detecting hard -ware Trojans under real process and environmental conditions [J].IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2010, 18 (12) : 1735-1744.
  • 7Sheng Wei, Potkonjak M. Scalable segmentation- based malicious circuitry detection and diagnosis [C]//IEEE/ACM International Conference on Com- puter-Aided Design. San Jose.. IEEE Press, 2010: 483-486.
  • 8Koushanfar F, Mirhoseini A. A unified framework for multimodal submodular integrated circuits Trojan de- tection[J]. IEEE Transactions on Information Foren- sics and Security, 2011, 6(1): 162-174.
  • 9Lamech C, Rad R, Tehranipoor M, et al. An experi- mental analysis of power and delay signal-to-noise re- quirements for detecting Trojans and methods for a- chieving the required detection sensitivities[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 142-155.
  • 10Agrawal D, Baktir S, Karakoyunlu D. Trojan detec- tion using IC fingerprinting[C]//IEEE Symposium on Security and Privacy. Berkeley: IEEE Press, 2007: 296-310.

共引文献63

同被引文献7

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部